a/
\(\Leftrightarrow4sinx.cosx\left(sin^4x-cos^4x\right)=sin^24x\)
\(\Leftrightarrow2sin2x\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^24x\)
\(\Leftrightarrow-2sin2x.cos2x=sin^24x\)
\(\Leftrightarrow-sin4x=sin^24x\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\sin4x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\4x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=-\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(1-cosx\right)-\sqrt{3}cos2x=1+1+cos\left(2x-\frac{3\pi}{2}\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=sin\left(2\pi-2x\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=-sin2x\)
\(\Leftrightarrow sin2x-\sqrt{3}cos2x=2cosx\)
\(\Leftrightarrow\frac{1}{2}sin2x-\sqrt{3}cos2x=cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=cosx=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{2}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{5}{4}=0\)
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{3}\right)-\frac{5}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\\sin\left(x+\frac{\pi}{3}\right)=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)
\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)
\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)
\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
e/
\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)
\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)