chứng minh 1+2+22+...+299+2100 = 2101-1
Cho biểu thức A = 1 + 21 + 22 + 23 +...+ 2100 + 2101 .Chứng minh A chia hết cho 7
A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101
A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101
Xét dãy số:0; 1; 2; 3;...; 100; 101
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (101 - 0) : 1 + 1 = 102 (số)
Vì 102 : 3 = 34
Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được
A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)
A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)
A = (1 + 21 + 22).(1 + 23 + ...+ 299)
A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)
Tính:
A=2100-299-298-...-22-2-1
Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)
\(\Leftrightarrow2A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)
\(\Leftrightarrow2A-A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2-2^{100}+2^{99}+2^{98}+...+2^2+2+1\)
\(\Leftrightarrow A=2^{101}-2\cdot2^{100}+1\)
\(\Leftrightarrow A=1\)
Tính
A= 2100 - 299 - 298 - 297 - .......... - 22 - 2 - 1
\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)
Đặt \(B=2^{99}+2^{98}+...+2+1\)
\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)
\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)
\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)
Mn giúp mình với ạ!Mình cảm ơn!!!
Bài 1:Chứng minh rằng B = 2 + 22 + 23 + 24 + ........ + 299 + 2100 chia hết cho 31.
Mình cảm ơn mn ạ!Giúp mình với tối nay 20:00 mình phải nộp bài rồi!!!
\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)
B=2+22+23+24+...+299+2100=2(1+22+23+24)+...+296(1+22+23+24)=2.31+26.31+...+296.31=31(2+26+...+296)⋮31
A=2100-299+298-297+...-23+22-2+1
HELP ME
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)
Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B
\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)
Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C
\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)
\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)
\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
1+2+23+25+...+299+2101
\(A=2+2^3+...+2^{101}\)
\(4A=2^3+2^5+...+2^{101}+2^{103}\)
\(4A-A=2^{103}-2\)
\(3A=2^{103}-2\)
\(A=\dfrac{2^{103}-2}{3}\)
\(\Rightarrow1+2+2^3+...+2^{101}=A+1=\dfrac{2^{103}+1}{3}\)
a, A = 1 + 2 + 22 + 23 + ... + 250 =
b, B = 1 + 3 + 32 + 33 + ... 3100 =
c, C = 5 + 52 + 53 + ... 530 =
d, D = 2100 = 299 + 298 - 297 + ... + 22 - 2
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
Tính hợp lí: 1 + 2 + 22 + 23 + 24 + ... 299 + 2100
Giúp mình nha!? Ai đúng mình tick cho
\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=2^{101}-1\)
\(\Leftrightarrow A=2^{101}-1\)
Đặt \(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}+2^{101}\)
\(\Rightarrow A=2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)=2^{101}-1\)
Tính hợp lí
a) A = 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 .
b) B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 .