Những câu hỏi liên quan
Trần Huy tâm
Xem chi tiết
Akai Haruma
8 tháng 7 2019 lúc 22:49

Lời giải:

Ta thực hiện chứng minh đẳng thức trên đúng bằng quy nạp

Với $n=2$: \((a+b)^=a^2+2ab+b^2=C^0_2a^2b^0+C^1_2ab+C^2_2a^0b^2\) (đúng)

................

Giả sử đẳng thức đúng đến $n=t$ $(t\in\mathbb{Z}>2$), tức là \((a+b)^t=\sum ^t_{k=0}C^k_ta^{t-k}b^k\)

Ta cần chứng minh nó cũng đúng với $n=t+1$. Thật vậy:

\((a+b)^{t+1}=(a+b)^t(a+b)=(a+b)\sum ^{t}_{k=0}a^{t-k}b^k\)

\(=C^0_ta^{t+1}+(C^1_t+C^0_t)a^tb+(C^2_t+C^1_t)a^{t-1}b^2+....+(C^t_t+C^{t-1}_t)ab^t+C^t_tb^{t+1}\)

\(=C^0_{t+1}a^{t+1}+C^1_{t+1}a^tb+C^2_{t+1}a^{t-1}b^2+....+C^t_{t+1}ab^t+C^{t+1}_{t+1}b^{t+1}\) (sử dụng đẳng thức \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\)\(C^0_t=C^0_{t+1}=1; C^t_t=C^{t+1}_{t+1}=1\))

\(=\sum ^{t+1}_{k=0}C^{k}_{t+1}a^{t+1-k}b^k\)

Phép chứng minh hoàn tất. Ta có đpcm.

Bình luận (2)
Trần Huy tâm
8 tháng 7 2019 lúc 16:29

chị Akai Haruma giúp em với

Bình luận (0)
Hoàng Lê Cát Tường
24 tháng 5 2023 lúc 22:26

 bnbnh

Bình luận (0)
Ngô Thành Chung
Xem chi tiết
SA Na
Xem chi tiết
Cold Wind
24 tháng 12 2017 lúc 21:10

tớ chỉ làm đc 1 bài (bài 3)

mờ kinh luôn!! Thôi thì cứ vừa đọc vừa đoán ^^!

Góc tạo bởi tiếp tuyến và dây cung

Bình luận (1)
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
18 tháng 5 2017 lúc 16:52

Ta có \(A=\sum\limits^n_{k=1}k^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=1}C^2_k\)

Kết hợp với bài 2.15 ta được :

\(A=C_{n+1}^2+2C^3_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Bình luận (0)
Mao Tử
Xem chi tiết
Ng Bảo Ngọc
23 tháng 1 2023 lúc 17:50

Bạn tham khảo cách làm nha

https://diendantoanhoc.org/topic/106253-lim-nto-inftyprod-k1nfrac2k-12k/

Bình luận (0)
o0o I am a studious pers...
Xem chi tiết
Lầy Văn Lội
6 tháng 5 2017 lúc 11:58

a) kéo dài O1E,O2F cắt CD ở M và N 

b) góc BFI + góc BEI =180 

c) gọi AB cắt EF ở K 

bằng đồng dạng ta chứng minh được KE=KF=KB.KA(đpcm)

Bình luận (0)
hh hh
Xem chi tiết
Nguyễn Thanh Giang
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 20:53

\(u_n=\dfrac{4n}{n^4+4n^2+16}=\dfrac{4n}{n^4+8n^2+16-4n^2}=\dfrac{4n}{\left(n^2+4\right)^2-4n^2}=\dfrac{4n}{\left(n^2-2n+4\right)\left(n^2+2n+4\right)}\)

\(=\dfrac{1}{n^2-2n+4}-\dfrac{1}{n^2+2n+4}=\dfrac{1}{\left(n-1\right)^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)

Do đó:

\(A_n=\dfrac{1}{\left(1-1\right)^2+3}-\dfrac{1}{\left(1+1\right)^2+3}+\dfrac{1}{\left(2-1\right)^2+3}-\dfrac{1}{\left(2+1\right)^2+3}+...+\dfrac{1}{\left(n-1\right)^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)

\(=\dfrac{1}{0^2+3}-\dfrac{1}{2^2+3}+\dfrac{1}{1^2+3}-\dfrac{1}{3^2+3}+\dfrac{1}{2^2+3}-\dfrac{1}{4^2+3}+...+\dfrac{1}{\left(n-1\right)^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)

\(=\dfrac{1}{0^2+3}+\dfrac{1}{1^2+3}-\dfrac{1}{n^2+3}-\dfrac{1}{\left(n+1\right)^2+3}=\dfrac{7}{12}-\dfrac{1}{n^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)

\(\Rightarrow\lim\left(A_n\right)=\dfrac{7}{12}\)

Bình luận (0)
Khiêm Nguyễn Gia
Xem chi tiết