Cho tập hợp A gồm n phần tử \(\left(n\ge4\right)\). Biết rằng số tập hợp con gồm 4 phần tử của A bằng 20 lần số tập hợp con gồm 2 phần tử của A. Tìm \(k\in\left[1,2,.....,n\right]\) sao cho số tập con gồm k phần tử của tập hợp A là lớn nhất.
Cho tập hợp A gồm n phần tử \(\left(n\ge4\right)\). Biết rằng số tập hợp con gồm 4 phần tử của A bằng 20 lần số tập hợp con gồm 2 phần tử của A. Tìm \(k\in\left[1,2,.....,n\right]\) sao cho số tập con gồm k phần tử của tập hợp A là lớn nhất.
Số tập hợp con có k phần tử của tập hợp A (có 18 phần tử)
\(C_{18}^k\left(k=1,.....,18\right)\)
Để tìm max \(C_{18}^k,k\in\left\{1,2,.....,18\right\}\) (*), ta tiến hành giải bất phương trình sau :
\(\frac{C_{18}^k}{C_{18}^{k+1}}< 1\)
\(\Leftrightarrow C_{18}^k< C_{18}^{k+1}\)
\(\Leftrightarrow\frac{18!}{\left(18-k\right)!k!}< \frac{18!}{\left(17-k\right)!\left(k+1\right)!}\)
\(\Leftrightarrow\left(18-k\right)!k!>\left(17-k\right)!\left(k+1\right)!\)
\(\Leftrightarrow17>2k\)
\(\Leftrightarrow k< \frac{17}{2}\)
Điều kiện (*) nên k = 1,2,3,.....8
Suy ra \(\frac{C_{18}^k}{C_{18}^{k+1}}>1\) khi k = 9,10,...,17
Vậy ta có
\(C^1_{18}< C_{18}^2< C_{18}^3< .........C_{18}^8< C_{18}^9>C_{18}^{10}>.....>C_{18}^{18}\)
Vậy \(C_{18}^k\) đạt giá trị lớn nhất khi k = 9. Như thế số tập hợp con gồm 9 phần tử của A là số tập hợp con lớn nhất.
Cho đa giác đều \(A_1A_2.....A_n,\) (\(n\ge2\), n nguyên) nội tiếp đường tròn O. Biết rằng số tam giác có 3 đỉnh trong 2 n điểm \(A_1,A_2,....,.A_{2n}\) gấp 20 lần số hình chữ nhật có 4 đỉnh trong 2n điểm \(A_1A_2.....A_n\). Tìm n
Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).
Theo bài ta có phương trình :
\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)
\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)
\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)
\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)
\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))
\(\Leftrightarrow n=18\)
Vậy đa giác đều có 16 cạnh, (thập lục giác đều)
Giải bất phương trình:
\(C_{n+2}^{n-1}\) + \(C_{n+2}^n\) > \(\frac{5}{2}\)\(A_n^2\)
Giải:
Điều kiện là n\(\ge\)2, n\(\in\)Z
Ta có
(1) \(\Leftrightarrow\)\(\frac{\left(n+2\right)!}{\left(n-1\right)!3!}\)+\(\frac{\left(n+2\right)!}{n!2!}\)>\(\frac{5}{2}\)\(\frac{n!}{\left(n-2\right)!}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)\left(n+2\right)}{6}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)>\(\frac{5\left(n-1\right)n}{2}\)
\(\Leftrightarrow\)n(n2+3n+2) + 3(n2+3n+2) > 15(n2-n)
\(\Leftrightarrow\)n3-9n2+26n+6>0
\(\Leftrightarrow\)n(n2-9n+26)+6>0 (1)
Xét tam thứ bậc hai n2-9n+26, ta thấy \(\Delta\)=81-104<0
Vậy n2-9n+26>0 với mọi n. Từ đó suy ra với mọi n\(\ge\)2 thì (1) luôn luôn đúng. Tóm lại mọi số nguyên n\(\ge\)2 đều là nghiệm của (1).
Giải phương trình
\(C_n^4\)+\(C_n^5\)= 3\(C_{n+1}^6\)
Điều kiện là n\(\ge\)5, n\(\in\)Z
Ta có
\(\Leftrightarrow\) \(C_{n+1}^5\) = 3\(C_{n+1}^6\) (áp dụng công thức \(C_{n+1}^k\) = \(C_n^k\) + \(C_n^{k-1}\))
\(\Leftrightarrow\) \(\frac{\left(n+1\right)!}{\left(n-4\right)!5!}\) = 3\(\frac{\left(n+1\right)!}{\left(n-5\right)!6!}\)
\(\Leftrightarrow\) \(\frac{1}{\left(n-4\right)!5!}\) = \(\frac{3}{\left(n-5\right)!6!}\)
\(\Leftrightarrow\) \(\frac{1}{n-4}\) = \(\frac{3}{6}\)
\(\Leftrightarrow\) 3n - 12 = 6
\(\Leftrightarrow\) n = 6
Rõ ràng n = 6 thỏa mãn điều kiện n\(\ge\) 5, n \(\in\) Z. Vậy nghiệm duy nhất của chương trình đã cho là n = 6.
Tìm tất cả các số tự nhiên x, y sao cho
\(A_x^{y-1}\) : \(A_{x-1}^y\) : \(C_{x-1}^y\) = 21:60:10
Điều kiện để phương trình có nghĩa là
\(\begin{cases}y-1\ge0\\x-1\ge\\x,y\in Z\end{cases}y}\) \(\Leftrightarrow\) \(\begin{cases}y\ge1\\x\ge\\x,y\in Z\end{cases}y+1}\)
Từ \(\frac{A_{x-1}^y}{C_{x-1}^y}\)= \(\frac{60}{10}\) \(\Leftrightarrow\) \(\frac{P_yC_{x-1}^y}{C_{x-1}^y}\) = 6
\(\Leftrightarrow\) \(P_y\) = 6 \(\Leftrightarrow\) y! = 3! \(\Leftrightarrow\) y=3
Thay lại vào phương trình ta có
\(\frac{A_x^2}{A_{x-1}^3}\) = \(\frac{21}{60}\) \(\Leftrightarrow\) \(\frac{x!\left(x-4\right)!}{\left(x-2\right)!\left(x-1\right)!}\) = \(\frac{7}{20}\) \(\Leftrightarrow\) \(\frac{x}{\left(x-3\right)\left(x-2\right)}\) = \(\frac{7}{20}\)
\(\Leftrightarrow\) 20x = 7(x2-5x+6)
\(\Leftrightarrow\) 7x2 - 55x + 42 = 0
\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=7\\x=\frac{6}{7}\end{array}\right.\) loại do (x\(\ge\)4, x\(\in\)N)
Giải bất phương trình:
\(C_x^2\) + \(C_x^4\) + .... + \(C_x^{2n}\) \(\ge\) \(2^{2003}\) - 1, x \(\in\) N*
Ta có
(1) \(\Leftrightarrow\) 1 + \(C_x^2\) + \(C_x^4\) + ... + \(C_x^{2n}\) \(\ge\) 22003 (2)
Theo công thức khai triển nhị thức newton, ta có
(1+t)2x = \(C_{2x}^0\) + \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + ... + \(C_{2x}^{2x}\)t2x
(1 - t)2x = \(C_{2x}^0\) - \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + .... + (-1)2x\(C_{2x}^{2x}\)t2x
Từ đó ta có
(1 + x)2x + (1 - t)2x = 2(1 + \(C_{2x}^2\)t2 + \(C_{2x}^4\)t4 + ... + \(C_{2x}^{2x}\)t2x)
Thay t = 1, có
1 + \(C_{2x}^2\) + \(C_{2x}^4\) + ... + \(C_{2x}^{2x}\) = 22x-1
Do đó
(2) \(\Leftrightarrow\) 22x-1 \(\ge\) 22003
\(\Leftrightarrow\) 2x - 1 \(\ge\) 2003
\(\Leftrightarrow\) x \(\ge\) 1002
Vậy với mọi số nguyên x \(\ge\) 1002 là nghiệm của (1)
(1) 1 + + + ... + 2 (2) Theo công thức khai triển nhị thức newton, ta có (1+t) = + t + t + ... + t (1 - t) = - t + t + .... + (-1) t Từ đó ta có (1 + x) + (1 - t) = 2(1 + t + t + ... + t ) Thay t = 1, có 1 + + + ... + = 2 Do đó (2) 2 2 2x - 1 2003 x 1002 Vậy với mọi số nguyên x 1002 là nghiệm của (1)
Giải hệ phương trình
\(C_{x+1}^y\) : \(C_x^{y+1}\) : \(C_x^{y-1}\) = 6 : 5 : 2
Điều kiện để phương trình (1) trên có nghĩa là:
\(\begin{cases}x\ge y+1\\y-1\ge\\x,y\in Z\end{cases}0}\) \(\Leftrightarrow\) \(\begin{cases}y\ge1\\x\ge\\x,y\in Z\end{cases}y+1}\)(2)
Từ phương trình (1) ta có
\(\frac{C_x^{y+1}}{C_x^{y-1}}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{x!\left(y-1\right)!\left(x-y+1\right)!}{\left(y+1\right)!\left(x-y-1\right)!x!}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{\left(x-y\right)\left(x-y+1\right)}{y\left(y+1\right)}\) = \(\frac{5}{2}\) (3)
Vẫn từ (1) ta có
\(\frac{C_{x+1}^y}{C_x^{y+1}}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) \(\frac{\left(x+1\right)!\left(y+1\right)!\left(x-y+1\right)!}{y!\left(x+1-y\right)!x!}\) = \(\frac{6}{5}\)
\(\Leftrightarrow\) \(\frac{\left(x+1\right)\left(y+1\right)}{\left(x-y\right)\left(x-y+1\right)}\) = \(\frac{6}{5}\) (4)
Nhân từng vế (3), (4) ta có
\(\frac{x+1}{y}\) = 3 \(\Leftrightarrow\) x+1 = 3y (5)
Thay (5) vào (4) đi đến
\(\frac{3y\left(y+1\right)}{\left(2y-1\right)2y}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) 15(y+1) = 12(2y-1)
\(\Leftrightarrow\) 9y = 27 \(\Leftrightarrow\) y=3 (6)
Từ (5), (6) có x=8
Vậy x=8, y=3 là nghiệm duy nhất của phương trình (1)
Giải bất phương trình hai ẩn n, k với n,k \(\ge\) 0
\(\frac{P_{n+5}}{\left(n-k\right)!}\) \(\le\) 60\(A_{n+3}^{k+2}\) (1)
Điều kiện để (1) có nghĩa là
\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\)
Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z (2)
Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)
\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60 (3)
Vì n\(\ge\)k \(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1
Ta nhận thấy nếu n\(\ge\)4, thì
(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72
Do đó mọi n\(\ge\)4 không thỏa mãn (3)
- Xét lần lượt các khả năng
1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0
Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)
2) Nếu n=1, do 0\(\le\)k\(\le\)n \(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)
Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)
3) Nếu n=2 khi đó:
(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60
\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2
4) Nếu n=3
(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60
\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3
Vậy (1) có các nghiệm (n,k) sau
(0,0), (1,0), (1,1), (2,2), (3,3).
Giải bất phương trình
\(A_n^3\) +2 \(C_n^{n-2}\)\(\le\) 9n (1)
Điều kiện để (1) có nghĩa là
\(\begin{cases}n\ge3\\n-2\ge0\\n\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge3\\n\in Z\end{cases}\)
Ta thấy (1) \(\Leftrightarrow\) \(\frac{n!}{\left(n-3\right)!}\) + 2\(\frac{n!}{\left(n-2\right)!2!}\) \(\le\) 9n
\(\Leftrightarrow\) (n-2)(n-1)n +(n-1)n \(\le\) 9n (2)
Do n\(\ge\)3 (tức n>0) nên
(2) \(\Leftrightarrow\) (n-2)(n-1) + n-1 \(\le\) 9
\(\Leftrightarrow\) \(n^2\) - 2n - 8 \(\le\) 0
\(\Leftrightarrow\) -2 \(\le\) n \(\le\) 4 (3)
Đối chiếu vơi điều kiện, từ (3) suy ra n=3, n=4
Vậy (1) có hai nghiệm là n=3, n=4.
có bao nhieu số tự nhiên có 4 chữ số phân biêt lớn hơn 2014
Số các chữ số tự nhiên có 4 chữ số lớn hơn 2014 là :
( 9999 - 2015 ) : 1 + 1 = 7985 ( số )
Đáp số 7985 số
so tu nhien co bon chu so phan biet thi kho qua