Bạn tham khảo cách làm nha
https://diendantoanhoc.org/topic/106253-lim-nto-inftyprod-k1nfrac2k-12k/
Bạn tham khảo cách làm nha
https://diendantoanhoc.org/topic/106253-lim-nto-inftyprod-k1nfrac2k-12k/
\(\left(x_n\right)\left\{{}\begin{matrix}x_1=2\\x_{n+1}=\dfrac{x_n+2+\sqrt{x_n^2+8x_n-4}}{2},n\in N,n>0\end{matrix}\right.\)
Đặt \(y_n=\sum\limits^n_{k=1}\dfrac{1}{x_n^2-4}\). Tìm lim yn
Tìm lim un với un=\(\sum\limits^n_{k=1}sin^k\alpha\) (α≠\(\dfrac{\pi}{2}\) +kπ, k ϵ Z)
Cho dãy (Un) thoả mãn: \(\left\{{}\begin{matrix}U_1\in\left(0;1\right)\\U_{n+1}=U_n-U_n^2\end{matrix}\right.\) với \(n\ge1\)
Tính \(\lim\limits\left(U_n\right)\), \(\lim\limits\left(nU_n\right)\) và \(\lim\limits\dfrac{n\left(nU_n-2\right)}{\ln n}\)
cho dãy số \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{1}{2}\left(u^2_n+1\right)\end{matrix}\right.\) tìm lim\(\Sigma^n_{i=1}\dfrac{1}{u_i+1}\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=2010\\u^2+2019u_n-2011u_{n+1}+1=0\end{matrix}\right.\)
tìm lim\(\left(\Sigma^n_{i=1}\dfrac{1}{u_i+2010}\right)\)
a) \(\lim\limits_{x\rightarrow+\infty}\)\(^{3_{\sqrt{x^3+4x^2}-x}}\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{4x-1}{x-1}neux>1\\7x+1neux< 1\end{matrix}\right.\)
Tính \(\lim\limits f\left(x\right)_{x\rightarrow1^+}\) , \(\lim\limits f\left(x\right)_{x\rightarrow1^-}\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=\sqrt{3}+\sqrt{2}\\u_{n+1}=\left(\sqrt{3}-\sqrt{2}\right)u^2_n+\left(2\sqrt{6}-5\right)u_{n_{ }}+3\sqrt{3}-3\sqrt{2}\end{matrix}\right.\)
tìm lim(\(\Sigma^1_{i=1}\dfrac{1}{u_i+\sqrt{2}}\))
Let \(S_n=\Sigma^n_{k=1}k!\left(k^2+3k+1\right)\left(n\inℕ^∗\right)\)
Prove that \(S_{400}\equiv2002\left(mod2005\right)\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)