Tính \(lim\dfrac{\prod\limits^n_{k=1}\left(2k-1\right)}{\prod\limits^n_{k=1}\left(2k\right)}\)
\(\left(x_n\right)\left\{{}\begin{matrix}x_1=2\\x_{n+1}=\dfrac{x_n+2+\sqrt{x_n^2+8x_n-4}}{2},n\in N,n>0\end{matrix}\right.\)
Đặt \(y_n=\sum\limits^n_{k=1}\dfrac{1}{x_n^2-4}\). Tìm lim yn
Cho dãy ( X k ) được xác định như sau x k = 1 2 ! + 2 3 ! + . . . + k ( k + 1 ) ! . Tìm lim u n với u n = x 1 n + x 2 n + . . . + x 2017 n n
A. + ∞
B. - ∞
C. 1 - 1 2017 !
D. 1 + 1 2017 !
Cho dãy (Un) thoả mãn: \(\left\{{}\begin{matrix}U_1\in\left(0;1\right)\\U_{n+1}=U_n-U_n^2\end{matrix}\right.\) với \(n\ge1\)
Tính \(\lim\limits\left(U_n\right)\), \(\lim\limits\left(nU_n\right)\) và \(\lim\limits\dfrac{n\left(nU_n-2\right)}{\ln n}\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=2010\\u^2+2019u_n-2011u_{n+1}+1=0\end{matrix}\right.\)
tìm lim\(\left(\Sigma^n_{i=1}\dfrac{1}{u_i+2010}\right)\)
cho dãy số (un):\(\left\{{}\begin{matrix}u_1=\sqrt{3}+\sqrt{2}\\u_{n+1}=\left(\sqrt{3}-\sqrt{2}\right)u^2_n+\left(2\sqrt{6}-5\right)u_{n_{ }}+3\sqrt{3}-3\sqrt{2}\end{matrix}\right.\)
tìm lim(\(\Sigma^1_{i=1}\dfrac{1}{u_i+\sqrt{2}}\))
1) biết các nghiệm của phương trình \(cos2x=-\dfrac{1}{2}\) có dạng \(x=\dfrac{\pi}{m}+k\pi,k\in Z\) với m,n là các số nguyên dương. Khi đó m+n bằng
2) cho \(x=\dfrac{\pi}{3}+k2\pi\left(k\in Z\right)\) là nghiệm của phương trình
3) cho \(x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\) là nghiệm của phương trình
Chứng minh rằng sin 2(x + kπ) = sin 2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin 2x
Cho dãy ( x k ) được xác định như sau:
x k = 1 2 ! + 2 3 ! + . . . + k ( k + 1 ) !
Tìm l i m u n với u n = x 1 n + x 2 n + . . . + x 2011 n n .