\(\dfrac{12}{49}và\dfrac{27}{100}\)
Giải phương trình và bất phương trình:
a) \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}-3=0}\)
b) \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) ≤ \(\dfrac{-3}{4}\)
c) \(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
So sánh các phân số sau:
a) \(\dfrac{23}{27}\) và \(\dfrac{22}{29}\)
b) \(\dfrac{15}{25}\) và \(\dfrac{25}{49}\)
a) Ta có \(\dfrac{23}{27}>\dfrac{23}{29};\dfrac{23}{29}>\dfrac{22}{29}\)
Vậy \(\dfrac{23}{27}>\dfrac{22}{29}\)
b) Ta có \(\dfrac{15}{25}=1-\dfrac{2}{5}\)
\(\dfrac{25}{49}=1-\dfrac{24}{49}\)
Vì \(\dfrac{2}{5}=\dfrac{24}{60}< \dfrac{24}{49}\)
Vậy \(\dfrac{15}{25}>\dfrac{25}{49}\)
23/27 lớn hơn 22/29
15/25 lớn hơn 25/49
Bài 1 : Tính
\(\dfrac{6^{100}.18^{100}.49^{50}}{14^{100}.27^{100}.4^{50}}\)
\(\dfrac{6^{100}\cdot18^{100}\cdot49^{50}}{14^{100}\cdot27^{100}\cdot4^{50}}\)
\(=\dfrac{3^{100}\cdot2^{100}\cdot\left(3^2\right)^{100}\cdot2^{100}\cdot\left(7^2\right)^{60}}{7^{100}\cdot2^{100}\cdot\left(3^3\right)^{100}\cdot\left(2^2\right)^{50}}\)
\(=\dfrac{3^{100}\cdot3^{200}\cdot2^{100}\cdot7^{120}}{7^{100}\cdot3^{300}\cdot2^{100}}\)
\(=\dfrac{3^{200}\cdot7^{20}}{3^{200}}\)
\(=7^{20}\)
Giải:
\(\dfrac{6^{100}.18^{100}.49^{50}}{14^{100}.27^{100}.4^{50}}.\)
\(=\dfrac{\left(3.2\right)^{100}.\left(3^2.2\right)^{100}.\left(7^2\right)^{50}}{\left(2.7\right)^{100}.\left(3^3\right)^{100}.\left(2^2\right)^{50}}.\)
\(=\dfrac{3^{100}.2^{100}.\left(3^2\right)^{100}.2^{100}.\left(7^2\right)^{50}}{2^{100}.7^{100}.\left(3^3\right)^{100}.\left(2^2\right)^{100}}.\)
\(=\dfrac{3^{100}.\left(3^2\right)^{100}.2^{100}.7^{100}}{7^{100}.\left(3^3\right)^{100}.2^{100}.2^{100}}.\)
\(=\dfrac{\left(3^3\right)^{100}}{\left(3^3\right)^{100}.2^{100}}.\)
\(=\dfrac{1}{2^{100}}.\)
Vậy.....
~ Học tốt!!! ~
P/s: mik ko bt có đúg hay ko vì phép tính này hơi nhìu lũy thừa và hơi "nhì nhằng", nên mik có sai ở đâu thì bn thông cảm nhé!!!
Thực hiện phép tính(Tính nhanh nếu có thể):
a) 0,25.\(\dfrac{12}{5}\).\(\dfrac{100}{7}\).49%
b)\(\dfrac{3}{8}\)+0,125.\(\dfrac{3}{4}\)-\(1\dfrac{1}{4}\)
c)\(\dfrac{-13}{27}\).\(\dfrac{4}{9}\)+\(\dfrac{4}{9}\).\(\dfrac{-14}{27}\)-\(\dfrac{5}{9}\)
d)\(\dfrac{2}{3.7}\)+\(\dfrac{2}{7.11}\)+\(\dfrac{2}{11.15}\)+.....+\(\dfrac{2}{91.95}\)
a: \(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{100}{7}\cdot\dfrac{49}{100}\)
\(=\dfrac{1}{4}\cdot\dfrac{12}{5}\cdot\dfrac{49}{7}=\dfrac{3}{5}\cdot7=\dfrac{21}{5}\)
b: \(=\dfrac{3}{8}+\dfrac{1}{8}\cdot\dfrac{3}{4}-\dfrac{5}{4}\)
\(=\dfrac{12}{32}+\dfrac{3}{32}-\dfrac{40}{32}=\dfrac{-25}{32}\)
c: \(=\dfrac{4}{9}\left(\dfrac{-13}{27}-\dfrac{14}{27}\right)-\dfrac{5}{9}=\dfrac{-4}{9}-\dfrac{5}{9}=-1\)
d: \(=\dfrac{2}{4}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{91\cdot95}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{91}-\dfrac{1}{95}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{92}{285}=\dfrac{46}{285}\)
Tính:
a,A=\(\dfrac{12^{15}.3^4-4^5.3^9}{27^3.2^{10}-32^3.3^9}\)
b. B= \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^3.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{99}{49^2.50^2}\)
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
Chứng minh rằng :
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =1+\dfrac{1}{2}+...+\dfrac{1}{50}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{25}\\ =\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
1) A = \(\left(-\dfrac{25}{27}-\dfrac{31}{42}\right)-\left(\dfrac{-7}{27}-\dfrac{3}{42}\right)\)
2) B = \(\dfrac{10\dfrac{3}{10}-\left(9,5-0,25\times18\right)\div0,5}{1\dfrac{1}{5}-1\dfrac{1}{2}}\)
3) C = \(\dfrac{3}{49}\times\dfrac{19}{2}-\dfrac{3}{49}\times\dfrac{5}{2}-\left(\dfrac{1}{20}-\dfrac{1}{4}\right)^2\times\left(\dfrac{-1}{2}-\dfrac{193}{14}\right)\)
1: \(A=\dfrac{-25}{27}-\dfrac{31}{42}+\dfrac{7}{27}+\dfrac{3}{42}=\dfrac{-2}{3}-\dfrac{2}{3}=\dfrac{-4}{3}\)
2: \(B=\dfrac{10.3-\left(9.5-4.5\right)\cdot2}{1.2-1.5}=\dfrac{10.3-10}{-0.3}=-1\)
c: \(=\dfrac{3}{49}\left(\dfrac{19}{2}-\dfrac{5}{2}\right)-\left(\dfrac{1}{20}-\dfrac{5}{20}\right)^2\cdot\left(\dfrac{-7}{14}-\dfrac{193}{14}\right)\)
\(=\dfrac{3}{49}\cdot7-\dfrac{1}{25}\cdot\dfrac{-200}{14}\)
\(=\dfrac{3}{7}+\dfrac{8}{14}=1\)
\(\dfrac{-1}{3}.\dfrac{2}{5}\)
\(\dfrac{-3}{7}.\dfrac{4}{15}\)
\(\dfrac{-9}{3}.\dfrac{15}{27}\)
\(\dfrac{-5}{6}.\)( -12 )
\(\dfrac{-12}{4}.\dfrac{8}{9}\)
\(-3.\dfrac{7}{6}\)
\(\dfrac{-15}{9}.\dfrac{27}{5}\)
\(-9.\dfrac{4}{27}\)
-2/15
-4/35
-5/3
10
-8/3
-7/2
-9
-4/3
Chúc em học giỏi
\(=\dfrac{-2}{15}\\ =\dfrac{-4}{35}\\ =-1\\ =10\\ =\dfrac{-8}{3}\\ =-7\\ =-9\\ =\dfrac{-4}{3}\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{49}.\sqrt{x-2}-14\sqrt{\frac{1}{49}}\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8$
$\Leftrightarrow 2\sqrt{x-2}=8$
$\Leftrightarrow \sqrt{x-2}=4$
$\Leftrightarrow x=4^2+2=18$ (tm)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$