Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà An Nguyễn Khắc
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2021 lúc 22:47

\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)

\(A=\left|2021-x\right|+\left|2020-x\right|\)

\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)

\(A_{min}=1\) khi \(2020\le x\le2021\)

Qasalt
Xem chi tiết
nam do duy
Xem chi tiết

Biểu thức nào em?

Kiều Ngọc Tú Anh
Xem chi tiết
Trần Thanh Phương
30 tháng 11 2018 lúc 17:32

ĐKXĐ : \(x\ne\left\{1;0\right\}\)

a) \(P=\left(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)

\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)

\(P=\left(\dfrac{\left(x-1\right)\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=\left(\dfrac{x^3-1}{x^3-1}\right)\cdot\dfrac{x^2+1}{2}\)

\(P=1\cdot\dfrac{x^2+1}{2}\)

\(P=\dfrac{x^2+1}{2}\)

b) Vì \(x^2\ge0\forall x\)

\(\Rightarrow P\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Mà ĐKXĐ \(x\ne0\)

=> ... đến đây ko biết làm :v haha

AI BIẾT LÀM HỘ ĐI

Cái này mk chưa học nên cx chưa rõ cách làm chính xác mong bạn thông cảm :)

Thùy Giang
Xem chi tiết
Vui lòng để tên hiển thị
14 tháng 1 2023 lúc 22:59

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

Nguyễn Lê Phước Thịnh
14 tháng 1 2023 lúc 23:01

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

vung nguyen thi
Xem chi tiết
Unruly Kid
4 tháng 12 2017 lúc 6:50

a) \(\dfrac{\left(x-1\right)^2}{x-2}=\dfrac{\left(x-2\right)^2+2\left(x-2\right)+1}{x-2}=x-2+2+\dfrac{1}{x-2}\ge2+2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}=4\)

GTNN là 4 khi x=3

Charlotte Ngân
Xem chi tiết
Ngoc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 14:09

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)

nên \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\dfrac{25}{16}\)

Dấu '=' xảy ra khi x=-1/2

Nguyen My Van
25 tháng 5 2022 lúc 14:09

Có \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)

\(A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy min \(A=\dfrac{25}{16}\Leftrightarrow x=\dfrac{-1}{2}\)

Toru
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 22:15

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)

\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)

c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)

=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)

Dấu '=' xảy ra khi (x-1)2=1

=>x-1=1 hoặc x-1=-1

=>x=0(loại) hoặc x=2(nhận)

Vậy: \(A_{min}=4\) khi x=2