Bài 1: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
a) A= a4-2a3+3a2-4a+5
b) B= \(\dfrac{x^2+4x-6}{3}\)
c) C= \(\dfrac{4+5\left|1-2x\right|}{7}\)
Bài 2:
a) Tìm a sao cho x4-x3+6x2-x+a chia hết cho đa thức x2-x+5.
b) Xác định hằng số a và b sao cho x4+ax2+b chia hết cho x2-x+1
Bài 3: Tính giá trị của biểu thức: A= x17-12x14+...-12x12+12x-1 với x=11
Cho biểu thức P=\(\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
a) Rút gọn P
b) Tính giá trị của P biết \(x=\dfrac{1}{4}\)
c) Tìm GTNN của biểu thức \(\dfrac{1}{P}\)
giúp mk vs!!!!
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
Cho biểu thức A =
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
Cho biểu thức :
\(\left(\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
a) Hãy tìm điểu kiện của x để giá trị của biểu thức được xác định
b) Chứng minh rằng khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biểu thức x
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)
a) \(\dfrac{x-2}{x^2+8x}\)
b) \(\dfrac{25x^2-1}{16x^2-25}\)
c) \(\dfrac{x^2+1}{2x^2-28x+98}\)
d) \(\dfrac{2x+3}{9-\left(x+3\right)^2}\)
1. Với các giá trị nào của x thì biểu thức vô nghĩa.
2. Tìm tập xác định của các phân thức trên.
3. Với giá trị nào của x, giá trị của các phân thức trên bằng 0?
Tìm điều kiện x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó, biểu thức không phụ thuộc vào biến :
a) \(\dfrac{x-\dfrac{1}{x}}{\dfrac{x^2+2x+1}{x}-\dfrac{2x+2}{x}}\)
b) \(\dfrac{\dfrac{x}{x+1}+\dfrac{1}{x-1}}{\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}}\)
c) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
d) \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)