Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Toru

Cho biểu thức:

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

a) Tìm điều kiện xác định của A

b) Rút gọn A

c) Tìm GTNN của A khi x > 1

Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 22:15

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)

\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)

c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)

=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)

Dấu '=' xảy ra khi (x-1)2=1

=>x-1=1 hoặc x-1=-1

=>x=0(loại) hoặc x=2(nhận)

Vậy: \(A_{min}=4\) khi x=2


Các câu hỏi tương tự
Cam Tu
Xem chi tiết
LanAnh
Xem chi tiết
thùy linh
Xem chi tiết
Mina Anh
Xem chi tiết
Mộc Miên
Xem chi tiết
Nguyễn Linh
Xem chi tiết
My Nguyen Tra
Xem chi tiết
My Nguyen Tra
Xem chi tiết
Khánh Linh Đỗ
Xem chi tiết