cho a+b+c=0
Tính A=\(\left(a-b\right)c^3+\left(c-a\right)b^3+\left(b-c\right)a^3\)
PTĐT thành nhân tử
a) \(A=a\left(b+c-a\right)^2+b\left(c+a-b\right)^2+c\left(a+b-c\right)^2+\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
b) \(B=\left(a+b-c\right)^3+\left(a-b+c\right)^3+\left(-a+b+c\right)^3-\left(a+b+c\right)^3\)
c) \(C=bc\left(a+b\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(c-b\right)\)
Cho \(a,b,c\in Z\) để \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=a+b+c\)
CMR: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3⋮81\)
Ta có \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Để tổng trên chia hết cho 81 thì \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮27\)
Mà \(a+b+c=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Bài toán trở thành: Cho \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)\). CMR: \(x+y+z⋮27\) - Hoc24
Cho \(a,b,c\) là các số dương . \(CMR\) \(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}\ge\dfrac{1}{4}\left(a+b+c\right)\)
\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(a+b\right)\left(b+c\right)}{64}}=\dfrac{3a}{4}\)
Tương tự:
\(\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{c+a}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}+\dfrac{c+a}{8}+\dfrac{a+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(VT+\dfrac{4\left(a+b+c\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
Phân tích:
A=\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
B=\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
C=\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Rút gọn
a,\(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(b+a-c\right)^3-\left(a+c-b\right)^3\)
b,\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
a,\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)
Tương tự :
\(\left(b+c-a\right)^3=b^3+c^3-a^3+3\left(a^2b-b^2a+ca^2-ac^2+b^2c+c^2b\right)\)
\(\left(b+a-c\right)^3=b^3-c^3+a^3+3\left(a^2b+b^2a-ca^2+ac^2-b^2c+c^2b\right)\)
\(\left(a+c-b\right)^3=c^3+a^3-b^3+3\left(-a^2b+b^2a+ca^2+ac^2+b^2c-c^2b\right)\)
Biểu thức sau khi rút gọn ta được
24abc
b,\(\left(a+b\right)^3=a^3+b^3+3\left(a^2b+b^2a\right)\)
\(\left(c+b\right)^3=c^3+b^3+3\left(c^2b+b^2c\right)\)
\(\left(a+c\right)^3=a^3+c^3+3\left(a^2c+b^2c\right)\)
=>\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3=\)\(2\left(a^2+b^2+c^2\right)+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)
Lại có
\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b+2abc\right)\right)\)
Biểu thức khi đó trở thành
\(2\left(a^2+b^2+c^2\right)-6abc=2\left(a^2+b^2+c^2-3abc\right)\)
Tặng vk iu
Rút gọn :
\(a,A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ b,B=-1^2+2^2-3^2+4^2-...-99^2+100^2\\ c,C=-1^2+2^2-3^2+4^2-...+\left(-1\right)^n\cdot n^2\\ d,D=3\cdot\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\\ e,E=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\\ g,G=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\\ h,H=\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3+\left(a+b-c\right)^3\\ i,I=\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(c+b\right)\left(c+a\right)\)
Mọi người ơi, giúp mk vs, đc câu nào hay câu ấy ! Help me!!!!!!!!!!!!!!!!!!
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
e) ta dể dàng thấy được : \(a^2+b^2=\left(a+b\right)^2-2ab\)
\(\Rightarrow E=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=\left(2a+2b\right)^2-2\left(a+b+c\right)\left(a+b-c\right)-2\left(a+b\right)^2\)
\(=4\left(a+b\right)^2-2\left(\left(a+b\right)^2-c^2\right)-2\left(a+b\right)^2\)
\(=4\left(a+b\right)^2-2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2=2c^2\)
g) củng sử dụng cái trên ta có : \(G=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)
\(=\left(2a+2b\right)^2-2\left(a+b+c+d\right)\left(a+b-c-d\right)+\left(2a-2b\right)^2-2\left(a+c-b-d\right)\left(a+d-b-c\right)\)
\(=4\left(a+b\right)^2+4\left(a-b\right)^2-2\left(\left(a+b\right)^2-\left(c+d\right)^2\right)-2\left(\left(a-b\right)^2-\left(c-d\right)^2\right)\)
\(=4\left(\left(a+b\right)^2+\left(a-b\right)^2\right)-2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)
\(=2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)\(=2\left(\left(2a\right)^2-2\left(a+b\right)\left(a-b\right)\right)+2\left(\left(2c\right)^2-2\left(c+d\right)\left(c-d\right)\right)\)
\(=2\left(4a^2-2\left(a^2-b^2\right)\right)+2\left(4c^2-2\left(c^2-d^2\right)\right)\)
\(=2\left(2a^2+2b^2\right)+2\left(2c^2+2d^2\right)=4\left(a^2+b^2+c^2+d^2\right)\)
bn đăng nhiều quá nên mk làm câu nào hay câu đó nha
mà nè mấy câu a;b;c;d hình như trên mạng có bn lên đó tìm nha .
Cho a,b,c>0 và a+b+c=3
CMR: \(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)
Đặt BĐT cần c/m là A
Dự đoán đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Cauchy cho 3 số không âm:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)
\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)
\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)
\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)
\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)
\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)
Cộng từng vế của các BĐT trên, ta được:
\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
(Dấu "="\(\Leftrightarrow a=b=c\))
Cho a,b,c > 0 va :a + b + c = 3. C/m:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+c\right)\left(b+a\right)}+\dfrac{c^3}{\left(c+a\right)\left(c+b\right)}\)
Cho a,b,c>0. CM các bđt sau:
a)\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2\)
b)\(3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
c)\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)
Đẳng thức xảy ra khi \(a=b=c\)
b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=c\)
c) Theo câu b và BĐT Cauchy-Schwarz:
\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(a=b=c\)
Cho a,b,c > 0 thõa mãn a+b+c=3
\(CMR:\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\dfrac{3}{4}\)
\(VT\ge\sum\left(\dfrac{a^3}{2a+b+c}\right)=\sum\left(\dfrac{a^3}{\sum a+a}\right)=\sum\dfrac{a^3}{3+a}\)
Ta có BĐT phụ :
\(\dfrac{a^3}{a+3}\ge\dfrac{11a-7}{16}\)(*)
\(\Leftrightarrow\left(16a+21\right)\left(a-1\right)^2\ge0\) (luôn đúng với mọi a>0)
Áp dụng BĐT (*) ta có :
\(\sum\dfrac{a^3}{3+a}\ge\dfrac{11\sum a-21}{16}=\dfrac{33-21}{16}=\dfrac{12}{16}=\dfrac{3}{4}\)