TK: Câu hỏi của pham trung thanh - Toán lớp 9 - Học trực tuyến OLM
TK: Câu hỏi của pham trung thanh - Toán lớp 9 - Học trực tuyến OLM
Cho\(x;y;z\in Z\)
\(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)
CMR: \(x+y+z\)là bội của 27
Cho 3 số nguyên dương: x,y,z . CMR: \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5⋮5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Cho x, y, z > 0 và \(x+y\le z\) . CMR :
\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
Cho 3 số thực x,y,z đôi một phân biệt sao cho
\(\left(y-z\right)\sqrt[3]{1-x^3}+\left(z-x\right)\sqrt[3]{1-y^3}+\left(x-y\right)\sqrt[3]{1-z^3}=0\)
CMR: \(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)=\left(1-xyz\right)^3\)
CMR: \(\left(y-z\right)^3.\left(1-x^3\right)+\left(z-x\right)^3.\left(1-y^3\right)+\left(x-y\right)^3.\left(1-z^3\right)=3\left(1-xyz\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Cho x,y,z>0. CMR: \(16xyz\left(x+y+z\right)\le3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}\)
Cho x,y,z là độ dài 3 cạnh của 1 tam giác. CMR:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz}\ge9\)
cho 3 số thực x,y,z sao cho x+y+z=1 CMR
\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\)
ta có : \(x^2+1=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)
Tương tự ta đc \(y^2+1=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=\left(z+x\right)\left(z+y\right)\)
ĐẶt \(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
\(\Rightarrow A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(z+x\right)\left(z+y\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)