\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(a+b\right)\left(b+c\right)}{64}}=\dfrac{3a}{4}\)
Tương tự:
\(\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{c+a}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}+\dfrac{c+a}{8}+\dfrac{a+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(VT+\dfrac{4\left(a+b+c\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)