Chứng minh Bất đẳng thức sau:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Chứng minh bất đẳng thức sau:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(a,b,c>0\right)\)
Áp dụng BĐT cosi:
\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được
Chứng minh các bất đẳng thức sau: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) (với a, b>0)
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Cho a,b,c > 0 và a,b,c < 2. Chứng minh bất đẳng thức:
\(\dfrac{1}{2-a}+\dfrac{1}{2-b}+\dfrac{1}{2-c}\ge\dfrac{a^2+b^2+c^2}{2}+\dfrac{3}{2}\)
Chứng minh bất đẳng thức sau
\(\dfrac{1}{n+1}+\dfrac{1}{n+2}+.....+\dfrac{1}{2n}\ge\dfrac{1}{2}\) \(\left(n\in N^{sao}\right)\)
Lời giải:
Tổng trên gồm \([2n-(n+1)]:1+1=n\)\([2n-(n+1)]:1+1=n\)
số hạng
Mỗi số hạng đứng trước \(\frac{1}{2n}\) đều lớn hơn hoặc bằng nó do \(n+1, n+2,....,2n-1\leq 2n\forall n\in\mathbb{N}^*\) thì \(\frac{1}{n+1}, \frac{1}{n+2},..., \frac{1}{2n-1}\geq \frac{1}{2n}\)
Suy ra:
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \underbrace{\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}}_{ \text{n lần}}=\frac{n}{2n}=\frac{1}{2}\) (đpcm)
Dấu bằng xảy ra khi \(n=1\)
Cho 3 số thực dương a, b, c thỏa mãn điều kiện a+b+c=3. Chứng minh bất đẳng thức sau \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca} \geq \dfrac{3}{2}\)
Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ac+b^2}+\dfrac{c+a}{ab+c^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Xét hiệu VT - VP
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)
Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0
\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)
=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)
mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm
Ta viết bất đẳng thức đã cho lại thành
\(\sum\left[\dfrac{1}{c}-\dfrac{\left(a+b+2c\right)}{2\left(ab+c^2\right)}\right]\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{2\prod\left(ab+c^2\right)}\)
\(\Leftrightarrow\sum\dfrac{c\left(a^2+ab+b^2\right)\left(a-b\right)^2}{ab\left(a^2+bc\right)\left(b^2+ca\right)}\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\)
Hay \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\quad\left(1\right)\)
Vậy $VT\geq 0$ và $S_a+S_b\ge 0;S_b+S_c\ge 0.$ Nếu \(a\ge b\ge c\rightarrow VT\ge0\ge VP,\) ta chỉ xét \(a\le b\le c.\)
\(\left(1\right)\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_b+S_c\right)\left(a-b\right)^2\ge\left[\dfrac{\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}-2S_b\right]\left(a-b\right)\left(b-c\right)\)
Đặt \(c=a+x+y,b=a+x\Rightarrow x=b-a;y=c-b\left(x,y\ge0\right)\) thay vào rút gọn các thứ là đpcm.
P/s: Cách này khá trâu nhưng chịu thôi, bài này mình nghĩ khá chặt.
Áp dụng bất đẳng thức cosi chứng minh
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với a,b \(\ge\)0
\(\left(a+b\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\) 4 với a,b > 0
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\) 9 với a,b,c > 0
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh bất đẳng thức trên
Lời giải:
Điều kiện: $a,b,c>0$
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a+b}{ab+c^2}=\frac{(a+b)^2}{(ab+c^2)(a+b)}=\frac{(a+b)^2}{a(b^2+c^2)+b(a^2+c^2)}\leq \frac{b^2}{a(b^2+c^2)}+\frac{a^2}{b(a^2+c^2)}\)
\(\frac{b+c}{bc+a^2}=\frac{(b+c)^2}{(b+c)(bc+a^2)}=\frac{(b+c)^2}{c(b^2+a^2)+b(a^2+c^2)}\leq \frac{b^2}{c(a^2+b^2)}+\frac{c^2}{b(a^2+c^2)}\)
\(\frac{c+a}{ca+b^2}=\frac{(c+a)^2}{(c+a)(ac+b^2)}=\frac{(c+a)^2}{c(a^2+b^2)+a(b^2+c^2)}\leq \frac{c^2}{a(b^2+c^2)}+\frac{a^2}{c(a^2+b^2)}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \text{VT}\leq \frac{b^2+c^2}{a(b^2+c^2)}+\frac{a^2+c^2}{b(a^2+c^2)}+\frac{b^2+a^2}{c(b^2+a^2)}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c$