Xét hiệu VT - VP
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)
Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0
\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)
=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)
mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm
Ta viết bất đẳng thức đã cho lại thành
\(\sum\left[\dfrac{1}{c}-\dfrac{\left(a+b+2c\right)}{2\left(ab+c^2\right)}\right]\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{2\prod\left(ab+c^2\right)}\)
\(\Leftrightarrow\sum\dfrac{c\left(a^2+ab+b^2\right)\left(a-b\right)^2}{ab\left(a^2+bc\right)\left(b^2+ca\right)}\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\)
Hay \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\quad\left(1\right)\)
Vậy $VT\geq 0$ và $S_a+S_b\ge 0;S_b+S_c\ge 0.$ Nếu \(a\ge b\ge c\rightarrow VT\ge0\ge VP,\) ta chỉ xét \(a\le b\le c.\)
\(\left(1\right)\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_b+S_c\right)\left(a-b\right)^2\ge\left[\dfrac{\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}-2S_b\right]\left(a-b\right)\left(b-c\right)\)
Đặt \(c=a+x+y,b=a+x\Rightarrow x=b-a;y=c-b\left(x,y\ge0\right)\) thay vào rút gọn các thứ là đpcm.
P/s: Cách này khá trâu nhưng chịu thôi, bài này mình nghĩ khá chặt.