Cho các số thực dương a,b,c thỏa mãn abc =1 .CMR
\(\dfrac{3+a}{\left(1+a\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Cho các số thực dương a,b,c thỏa mãn abc=1 CMR:
\(\dfrac{3+a}{\left(a+1\right)^2}+\dfrac{3+b}{\left(1+b\right)^2}+\dfrac{3+c}{\left(1+c\right)^2}\ge3\)
Cho a, b, c là 3 số dương thỏa mãn abc = 1. CMR :
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
1: Cho a,b,c là độ dài 3 cạnh của 1 tam giác có tổng bằng 1. CMR: \(a^2+b^2+c^2+4abc< \dfrac{1}{2}\)
2: Cho -1<x,y,z<3 và x+y+z=1. CMR: \(x^2+y^2+z^2\le11\)
3: Cho x,y,z là các số \(\ge\)1 . CMR: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
4: Cho x>y và xy=1. CMR: \(\dfrac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
5: Cho a,b,c là độ dài 3 cạnh tam giác:
a)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c)\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Cho a, b, c là độ dài 3 cạnh tam giác. CMR :
B1
a. \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b. \(abc>\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
c. \(2a^2b^2+2b^2c^2+2c^2a^2-a^4+b^4-c^4>0c\)
d. \(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)
B2
a. \(\dfrac{1}{a+b};\dfrac{1}{b+c};\dfrac{1}{c+a}\) cũng là 3 cạnh 1 tam giác khác.
b. \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca\ge3\) . CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
BÀi: :
1.CMr \(a^2+b^2-2ab\ge0\)
2.Cmr \(\dfrac{a^2+b^2}{2}\ge ab\)
3.Cmr \(a\left(a+2\right)< \left(a+1\right)^2\)
4.Cmr \(m^2+n^2+2\ge2\left(m+n\right)\)
5.Cmr \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a,b>0
6.Cmr \(\forall x\in R\) đều là nghiệm của bất phương trình \(x^2-x+1>0\)
7.Cmr \(a^4+b^4+c^4+d^4\ge4abcd\)
8. Cm bất đẳng thức \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\)
9.Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) Chứng minh \(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
\(\left(a^2+b^2+c^2\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)
Giúp mik với ạ
Cho hai số thực \(a\ne0,b\ne0\) thỏa mãn \(\left(a+b\right)ab=a^2+b^2-ab\). Chứng minh
a) \(4\left(a+b\right)ab=3\left(a-b\right)^2+\left(a+b\right)^2\)
b) \(\dfrac{1}{a^3}+\dfrac{1}{b^3}\le16\)