Tập nghiệm của bất phương trình \(x^2+2x+\dfrac{1}{\sqrt{x+4}}>3+\dfrac{1}{\sqrt{x+4}}\) là
Giải các bất phương trình sau rồi biểu diễn tập nghiệm của chúng trên trục số:
1) \(\left(x+3\right)^2-3\left(2x-1\right)>x\left(x-4\right)\)
2) \(1+\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
3) \(x-\dfrac{2x-7}{4}< \dfrac{2x}{3}-\dfrac{2x+3}{2}-1\)
4) \(\dfrac{2x+1}{x-3}\le2\)
5) \(\dfrac{12-3x}{2x+6}>3\)
6) \(x^2+3x-4\le0\)
7) \(\dfrac{5}{5x-1}< \dfrac{-3}{5-3x}\)
8) \(\left(2x-1\right)\left(3-2x\right)\left(1-x\right)>0\)
1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)
=>-4x<12
hay x>-3
2: \(\Leftrightarrow6+2x+2>2x-1-12\)
=>8>-13(đúng)
4: \(\dfrac{2x+1}{x-3}\le2\)
\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)
=>x-3<0
hay x<3
6: =>(x+4)(x-1)<=0
=>-4<=x<=1
Tìm tập xách định của bất phương trình
\(\dfrac{2x}{\left|x+1\right|-3}-\dfrac{1}{\sqrt{2-x}}\ge1\)
Tìm tập nghiệm của phương trình
a/ \(x-\sqrt{2x+3}=-2x\)
b/ \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\)
c/ \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\)
a) \(x-\sqrt{2x+3}=-2x\)
\(\Leftrightarrow\sqrt{2x+3}=x+2x\)
\(\Leftrightarrow\sqrt{2x+3}=3x\)
\(\Leftrightarrow2x+3=9x^2\)
\(\Leftrightarrow9x^2-2x-3=0\)
\(\Rightarrow\Delta=\left(-2\right)^2-4\cdot9\cdot\left(-3\right)=112>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2+\sqrt{112}}{18}=\dfrac{1+2\sqrt{7}}{9}\\x_2=\dfrac{2-\sqrt{112}}{18}=\dfrac{1-2\sqrt{7}}{9}\end{matrix}\right.\)
b) \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\) (ĐK: \(x\ne0,x\ne-1\))
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{x+1}=1\)
\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=1\)
\(\Leftrightarrow\dfrac{x+1+x}{x\left(x+1\right)}=1\)
\(\Leftrightarrow\dfrac{2x+1}{x^2+x}=1\)
\(\Leftrightarrow2x+1=x^2+1\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
c) \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\) (ĐK: \(x\ge3\))
\(\Leftrightarrow2\sqrt{x^2-2}=\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{4\left(x^2-9\right)}=\sqrt{x+3}\)
\(\Leftrightarrow4\left(x^2-9\right)=x+3\)
\(\Leftrightarrow4x^2-36=x+3\)
\(\Leftrightarrow4x^2-x-36-3=0\)
\(\Leftrightarrow4x^2-x-39=0\)
\(\Rightarrow\Delta=\left(-1\right)^2-4\cdot4\cdot\left(-39\right)=625>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{625}}{8}=\dfrac{13}{4}\left(tm\right)\\x_2=\dfrac{1-\sqrt{625}}{8}=-3\left(ktm\right)\end{matrix}\right.\)
Tìm tập nghiệm của bất pt
a) \(2x-\dfrac{x-3}{5}\le4x-1\)
b) \(\sqrt{x^2+2}\le x-1\)
c) \(\sqrt{x-1}+\sqrt{5-x}+\dfrac{1}{x-3}>\dfrac{1}{x-3}\)
a) \(2x-\dfrac{x-3}{5}-4x+1\le0\)
\(\Leftrightarrow10x-x+3-20x+5\le0\)
\(\Leftrightarrow-11x+8\le0\)
\(\Leftrightarrow x\ge\dfrac{8}{11}\)
\(\Rightarrow x\in\left(\dfrac{8}{11};+\infty\right)\)
b) \(\sqrt{x^2+2}\le x-1\)
\(\Leftrightarrow x^2+2\le x^2-2x+1\) \(\left(x-1\ge\sqrt{x^2+2}\ge\sqrt{2}\Rightarrow x\ge1+\sqrt{2}\right)\)
\(\Leftrightarrow x\le-\dfrac{1}{2}\)
\(\Rightarrow x\in\varnothing\)
c) \(\sqrt{x-1}+\sqrt{5-x}+\dfrac{1}{x-3}>\dfrac{1}{x-3}\) (\(x\in\left[1;5\right]\backslash\left\{3\right\}\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{5-x}>0\)
\(\Leftrightarrow4+2\sqrt{\left(x-1\right)\left(5-x\right)}>0\) ( luôn đúng )
vậy \(x\in\left[1;5\right]\backslash\left\{3\right\}\)
tìm nghiệm
a)\(\sqrt{5x-1}\)=8
b)tập nghiệm của bất phương trình\(\sqrt{5x-2}\)<4
c)\(\sqrt{x-2x+1}-\sqrt{x^2-4x+4}=x-3\)
\(a,ĐK:x\ge\dfrac{1}{5}\\ PT\Leftrightarrow5x-1=64\\ \Leftrightarrow x=13\left(tm\right)\\ b,ĐK:x\ge\dfrac{2}{5}\\ BPT\Leftrightarrow5x-2< 16\\ \Leftrightarrow x< \dfrac{18}{5}\\ \Leftrightarrow\dfrac{2}{5}\le x< \dfrac{18}{5}\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\left|x-1\right|-\left|x-2\right|=x-3\\ \Leftrightarrow\left[{}\begin{matrix}1-x-\left(2-x\right)=x-3\left(x< 1\right)\\x-1-\left(2-x\right)=x-3\left(1\le x< 2\right)\\x-1-\left(x-2\right)=x-3\left(x\ge2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(ktm\right)\\x=0\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Giải các bất phương trình sau:
\(a,\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
\(b,4\sqrt{x}+\dfrac{2}{\sqrt{x}}< 2x+\dfrac{1}{2x}+2\)
a, ĐKXĐ : \(D=R\)
BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)
Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)
BPTTT : \(5\sqrt{a+24}>a\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)
\(\Leftrightarrow-24\le a< 40\)
- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)
\(\Leftrightarrow-9< x< 4\)
Vậy ....
b, ĐKXĐ : \(x>0\)
BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)
- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)
BPTTT : \(2a\le a^2\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)
\(\Leftrightarrow a\ge2\)
\(\Leftrightarrow a^2\ge4\)
- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)
\(\Leftrightarrow4x^2-12x+1\ge0\)
\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)
Vậy ...
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Tổng các nghiệm nguyên của bất phương trình \(\dfrac{x-2}{\sqrt{x-4}}\le\dfrac{4}{\sqrt{x-4}}\) bằng
ĐKXĐ: \(x>4\)
\(\dfrac{x-2}{\sqrt{x-4}}\le\dfrac{4}{\sqrt{x-4}}\Rightarrow x-2\le4\)
\(\Rightarrow x\le6\Rightarrow4< x\le6\)
\(\Rightarrow x=\left\{5;6\right\}\Rightarrow5+6=11\)
Tập nghiệm của bất pt
a) \(\sqrt{x-2017}>\sqrt{2017-x}\)
b) \(\dfrac{2x^2-3x+4}{x^2+3}>2\)
c) \(3-2x+\sqrt{2-x}< x+\sqrt{2-x}\)
a, ĐK: \(x=2017\)
\(\sqrt{x-2017}>\sqrt{2017-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2017-x\ge0\\x-2017>2017-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2017\\x>2017\end{matrix}\right.\)
\(\Rightarrow S=\varnothing\)
b, \(\dfrac{2x^2-3x+4}{x^2+3}>2\)
\(\Leftrightarrow2x^2-3x+4>2x^2+6\)
\(\Leftrightarrow x< -\dfrac{2}{3}\)
\(\Rightarrow S=\left(-\infty;-\dfrac{2}{3}\right)\)
c, ĐK: \(x\le2\)
\(3-2x+\sqrt{2-x}< x+\sqrt{2-x}\)
\(\Leftrightarrow3-2x+\sqrt{2-x}< x+\sqrt{2-x}\)
\(\Leftrightarrow3x>3\)
\(\Leftrightarrow x>1\)
\(\Rightarrow S=(1;2]\)