tính \(\lim\limits_{x\rightarrow\dfrac{\pi}{4}}\dfrac{\sin x-\cos x}{1-\tan x}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow a}\dfrac{\sin x-\sin a}{x-a}\)
b) \(\lim\limits_{x\rightarrow1}\left(1-x\right)\tan\dfrac{\pi x}{2}\)
c) \(\lim\limits_{x\rightarrow\dfrac{\pi}{3}}\dfrac{2\sin^2x+\sin x-1}{2\sin^2x-3\sin x+1}\)
d) \(\lim\limits_{x\rightarrow0}\dfrac{\tan x-\sin x}{\sin^3x}\)
Giúp em những câu này với ạ!
a) \(\lim\limits_{x\to a} \dfrac{\sin x -\sin a}{x-a}\)
b) \(\lim\limits_{x\to \pi} \dfrac{1-\sin \dfrac{x}{2}}{\pi-x}\)
c) \(\lim\limits_{x\to \dfrac{\pi}{3}} \dfrac{\sin(x-\dfrac{\pi}{3})}{1-2\cos x}\)
d) \(\lim\limits_{x\to a} \dfrac{\tan^2 x - \tan^2 a}{\tan(x-a)}\)
\(\lim\limits_{x\rightarrow a}\frac{sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}.cos\left(\frac{x+a}{2}\right)=1.cos\left(\frac{a+a}{2}\right)=cosa\)
b/ \(\lim\limits_{x\rightarrow\pi}\frac{sin\frac{\pi}{2}-sin\frac{x}{2}}{\pi-x}=\lim\limits_{x\rightarrow\pi}\frac{sin\left(\frac{\pi-x}{4}\right)}{\frac{\pi-x}{4}}.\frac{cos\left(\frac{\pi+x}{4}\right)}{2}=\frac{cos\left(\frac{\pi+\pi}{4}\right)}{2}=0\)
c/ Đặt \(x-\frac{\pi}{3}=a\Rightarrow x=a+\frac{\pi}{3}\)
\(\lim\limits_{a\rightarrow0}\frac{sina}{1-2cos\left(a+\frac{\pi}{3}\right)}=\lim\limits_{a\rightarrow0}\frac{sina}{1-cosa+\sqrt{3}sina}\)
\(=\lim\limits_{a\rightarrow0}\frac{2sin\frac{a}{2}cos\frac{a}{2}}{-2sin^2\frac{a}{2}+2\sqrt{3}sin\frac{a}{2}cos\frac{a}{2}}=\lim\limits_{a\rightarrow0}\frac{cos\frac{a}{2}}{-sin\frac{a}{2}+\sqrt{3}cos\frac{a}{2}}=\frac{1}{\sqrt{3}}\)
d/Ta có: \(tana-tanb=\frac{sina}{cosa}-\frac{sinb}{cosb}=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)
Áp dụng:
\(\lim\limits_{x\rightarrow a}\frac{\left(tanx-tana\right)\left(tanx+tana\right)}{\frac{sin\left(x-a\right)}{cos\left(x-a\right)}}=\lim\limits_{x\rightarrow a}\frac{sin\left(x-a\right)\left(tanx+tana\right).cos\left(x-a\right)}{sin\left(x-a\right).cosx.cosa}=\lim\limits_{x\rightarrow a}\frac{\left(tanx+tana\right).cos\left(x-a\right)}{cosx.cosa}\)
\(=\frac{2tana}{cos^2a}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{x^2+x+1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{3x+1}{3x^2-x+5}\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x+5}{\sqrt{x^2+x}}\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{-5x+1}{\sqrt{3x^2+1}}\)
`a)lim_{x->+oo}[x+1]/[x^2+x+1]`
`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`
`=0`
`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`
`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`
`=0`
`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`
`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`
`=-3`
`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`
`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`
`=-5/3`
Tính giới hạn:
\(_{\lim\limits_{x\rightarrow\dfrac{\Pi}{4}}}\dfrac{\sqrt{2}Cosx-1}{\sqrt{2}Sinx-1}\)
Đặt \(t=x-\dfrac{\pi}{4}\), khi đó:
\(\lim\limits_{x\rightarrow\dfrac{\pi}{4}}\dfrac{\sqrt{2}cosx-1}{\sqrt{2}sinx-1}=\lim\limits_{t\rightarrow0}\dfrac{\sqrt{2}cos\left(t+\dfrac{\pi}{4}\right)-1}{\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)-1}\)
\(=\lim\limits_{t\rightarrow0}\dfrac{cost-sint-1}{cost+sint-1}\)
\(=\lim\limits_{t\rightarrow0}\dfrac{1-2sin^2\dfrac{t}{2}-2sin\dfrac{t}{2}.cos\dfrac{t}{2}-1}{1-2sin^2\dfrac{t}{2}+2sin\dfrac{t}{2}.cos\dfrac{t}{2}-1}\)
\(=\lim\limits_{t\rightarrow0}\dfrac{-2sin\dfrac{t}{2}\left(sin\dfrac{t}{2}+cos\dfrac{t}{2}\right)}{-2sin\dfrac{t}{2}\left(sin\dfrac{t}{2}-cos\dfrac{t}{2}\right)}\)
\(=\lim\limits_{t\rightarrow0}\dfrac{sin\dfrac{t}{2}+cos\dfrac{t}{2}}{sin\dfrac{t}{2}-cos\dfrac{t}{2}}\)
\(=-1\)
lim đề bài cho = \(\lim\limits_{x->\dfrac{\pi}{4}}\dfrac{-\sqrt{2}sinx}{\sqrt{2}cosx}\)
Thay x vào là xong
Tính giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}=\dfrac{1}{3}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x}{x}+\dfrac{3}{x}}{\dfrac{3x}{x}-\dfrac{1}{x}}=\dfrac{1}{3}\)
b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{4}{x^2}}-\dfrac{x}{x}}{\dfrac{3x}{x}-\dfrac{1}{x}}=-\dfrac{2}{3}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+1}}\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}-\sqrt{\dfrac{3x^2}{x^2}+\dfrac{2}{x^2}}}{\dfrac{5x}{x}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}}=\dfrac{2-\sqrt{3}}{5+1}=\dfrac{2-\sqrt{3}}{6}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{\dfrac{x^2}{x^4}+\dfrac{1}{x^4}}{\dfrac{2x^4}{x^4}+\dfrac{x^2}{x^4}-\dfrac{3}{x^4}}}=0\)
3/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt[3]{\dfrac{x^6}{x^6}+\dfrac{x^4}{x^6}+\dfrac{1}{x^6}}}{\sqrt{\dfrac{x^4}{x^4}+\dfrac{x^3}{x^4}+\dfrac{1}{x^4}}}=-1\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)
b) \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)
c) \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)
a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)
b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)
\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)
c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)
\(=\dfrac{4}{11}\)
Tính các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-1}{x+1}\)
b) \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{x+2}\)
c) \(\lim\limits_{x\rightarrow6}\dfrac{\sqrt{x+3}-3}{x-6}\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-6}{4-x}\)
e) \(\lim\limits_{x\rightarrow+\infty}\dfrac{17}{x^2+1}\)
f) \(\lim\limits_{x\rightarrow+\infty}\dfrac{-2x^2+x-1}{3+x}\)
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.