Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Vu
Xem chi tiết
nthv_.
19 tháng 11 2021 lúc 7:53

\(a,VT=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{\left(x+1\right)\left(1-3x\right)}{3x}\right)\cdot\dfrac{x}{x-1}\\ =\left(\dfrac{2}{3x}-\dfrac{2-6x}{3x}\right)\cdot\dfrac{x}{x-1}=\dfrac{6x}{3x}\cdot\dfrac{x}{x-1}=\dfrac{2}{x-1}=VP\left(x\ne0;x\ne1\right)\)

\(b,VT=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}=VP\left(a\ge0;a\ne1\right)\)

Nguyễn Kiều Anh
Xem chi tiết
Trần Minh Hoàng
13 tháng 3 2021 lúc 15:41

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).

 

Anh Thư Thái
24 tháng 3 2021 lúc 18:29

undefined

Anh Thư Thái
24 tháng 3 2021 lúc 18:32

undefined

Phạm Thị Thùy Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:44

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 22:32

1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)

=>4x+8=3x-1

=>x=-9

2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)

=>8x-4=5x-7

=>3x=-3

=>x=-1

3: ĐKXD: x>=0

\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

=>\(x+\sqrt{x}-6=x-1\)

=>căn x=-1+6=5

=>x=25

4: ĐKXĐ: x>=0

PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

=>x-2*căn x-3=x-4

=>-2căn x-3=-4

=>2căn x+3=4

=>2căn x=1

=>căn x=1/2

=>x=1/4

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 0:14

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 8:45

1: ĐKXĐ: x>1/2

=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)

x^2-2x+1>=0

=>x^2>=2x-1

=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)

Dấu = xảy ra khi x=1

(x^2-2x+1)(x^2+2x+3)>=0

=>x^4-4x+3>=0

=>x^4>=4x-3

=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)

=>VT>=2

Dấu = xảy ra khi x=1

2: 4x-1=x+x+2x-1

5x-2=x+2x-1+2x-1

\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)

\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)

=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)

=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)

Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)

Dấu = xảy ra khi x=1

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2021 lúc 0:26

Câu a bạn coi lại đề

b. ĐKXĐ: \(x\ge0;x\ne1\)

\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)

\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)

\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )

\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)

\(\Leftrightarrow20x^2+16x-1=0\)

\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)

Akai Haruma
3 tháng 3 2021 lúc 1:14

Bạn xem lại đề câu a.

Trần Khang
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Quang Định
6 tháng 4 2017 lúc 19:48

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)

ĐKXĐ: \(x>1\)

\(3x^2+1=4\)

\(3x^2=3\)

\(x^2=1\)

\(x=\pm1\)

=> Pt vô nghiệm

 

Nguyễn Quang Định
6 tháng 4 2017 lúc 19:51

b) ĐKXĐ: x>-4

\(x^2+3x+4=x+4\)

\(x^2+2x=0\)

\(x\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

Bùi Thị Vân
3 tháng 5 2017 lúc 10:49

c) Đkxđ: \(3x-2>0\Leftrightarrow x>\dfrac{2}{3}\)
Pt \(\Leftrightarrow3x^2-x-2=3x-2\)
\(\Leftrightarrow3x^2-4x=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\left(l\right)\\x=\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{4}{3}\) là nghiệm của phương trình.
d) Đkxđ: \(x\ne1\)
\(2x+3+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\) \(\Leftrightarrow\dfrac{\left(2x+3\right)\left(x-1\right)}{x-1}+\dfrac{4}{x-1}=\dfrac{x^2+3}{x-1}\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)+4=x^2+3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy \(x=-2\) là nghiệm của phương trình.