HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hàm số y= x + 2\((m+1)x+m^2+m\) có đồ thị \((P)\)
a, Khi m =1 , tìm trên\((P)\) các điểm có tung độ bằng -1
b, Tìm m để \((P)\)cắt trục hoành tại hai điểm phân biệt x ; x thỏa mãn \(|x_1-x_2|\text{=\sqrt{5}}\)
Xác định trục đối xứng, tọa độ đỉnh , các giao điểm với trục tung và trục hoành của các parabol :
a, y= 2x2-x-2
b,y= -3x2-6x+4
c, y=-2x2-x+2
Tìm tập xác định của hàm số :
f. y=\(\dfrac{x}{\sqrt{x+1}-\sqrt{7-2x}}\)
g.y=\(\dfrac{2}{\sqrt{x+1}}+\dfrac{\sqrt{x+2}}{x^2-4}\)
h.y=\(\dfrac{3}{|x+1|-|x-2|}\)
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
Cho hàm số y=x^2 +bx+c có đồ thị P , P đi qua A(0;6) có trục đối xứng x=1 Tìm các khoảng đồng biến , nghịch biến và vẽ đồ thị x= -x^2+4x
Cho (P) : y=ax2+bx+c đi qua điểm F(0;5) và coa đỉnh I(3:-4)
a) xác định (P)
b) Khảo sát số biến thiên và vẽ đồ thị hàm số (P) vừa tìm được