Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tâm3011
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Trương Diệu Linh🖤🖤
Xem chi tiết
Thanh Hoàng Thanh
3 tháng 2 2021 lúc 10:46

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4

Bbi thành real
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
22 tháng 3 2022 lúc 13:44

\(a,\\ \Leftrightarrow3x-x=10-6\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\\ b,\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Nguyễn Khánh Châu
22 tháng 3 2022 lúc 13:45

\(a,\Leftrightarrow3x-x=10-6\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)

Vậy phương trình có tập nghiệm S = \(\left\{2\right\}\)

\(b,\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow x+1=0\)           hoặc            \(\Leftrightarrow x-2=0\)       

\(\Leftrightarrow x=-1\)                                                     \(\Leftrightarrow x=2\)

Vậy phương trình có tập nghiệm S = \(\left\{-1;2\right\}\)

Quảng Nguyễn
22 tháng 3 2022 lúc 13:48

a)3x + 6 = x +10
 ⟺3x-x=10-6
 ⟺2x=4 ⟺x=2
Vậy tập nghiệm của phương trình là S={2}
b) x(x + 1) - 2 (x + 1) = 0
 ⟺(x+1)(x-2)=0
 ⟺x+1=0        ⟺x=-1
     x-2=0         ⟺x=2
Vậy tập nghiệm của phương trình là S={2;-1}

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 20:39

a) Ta có: \(\left|x^2-x+2\right|-3x-7=0\)

\(\Leftrightarrow\left|x^2-x+2\right|=3x+7\)

\(\Leftrightarrow x^2-x+2=3x+7\)(Vì \(x^2-x+2>0\forall x\))

\(\Leftrightarrow x^2-x+2-3x-7=0\)

\(\Leftrightarrow x^2-4x-5=0\)

\(\Leftrightarrow x^2-5x+x-5=0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy: S={5;-1}

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:42

a) \(\sqrt {2 - x}  + 2x = 3\)\( \Leftrightarrow \sqrt {2 - x}  = 3 - 2x\)  (1)

Ta có: \(3 - 2x \ge 0 \Leftrightarrow x \le \frac{3}{2}\)

Bình phương hai vế của (1) ta được:

\(\begin{array}{l}2 - x = {\left( {3 - 2x} \right)^2}\\ \Rightarrow 2 - x = 9 - 12x + 4{x^2}\\ \Leftrightarrow 4{x^2} - 11x + 7 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = \frac{7}{4}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

b) \(\sqrt { - {x^2} + 7x - 6}  + x = 4\)\( \Leftrightarrow \sqrt { - {x^2} + 7x - 6}  = 4 - x\)  (2)

Ta có: \(4 - x \ge 0 \Leftrightarrow x \le 4\)

Bình phương hai vế của (2) ta được:

\(\begin{array}{l} - {x^2} + 7x - 6 = {\left( {4 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 7x - 6 = 16 - 8x + {x^2}\\ \Leftrightarrow 2{x^2} - 15x + 22 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {TM} \right)\\x = \frac{{11}}{2}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:35

a) \(\sqrt {2{x^2} + x + 3}  = 1 - x\)

Bình phương hai vế của phương trình ta được:

\(2{x^2} + x + 3 = 1 - 2x + {x^2}\)

Sau khi thu gọn ta được \({x^2} + 3x + 2 = 0\). Từ đó x=-1 hoặc x=-2

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy cả hai giá trị \(x =  - 1;x =  - 2\) đều thỏa mãn

Vậy phương trình có tập nghiệm \(S = \left\{ { - 1; - 2} \right\}\)

b) \(\sqrt {3{x^2} - 13x + 14}  = x - 3\)

Bình phương hai vế của phương trình ta được:
\(3{x^2} - 13x + 14 = {x^2} - 6x + 9\)

Sau khi thu gọn ta được \(2{x^2} - 7x + 5 = 0\). Từ đó \(x = 1\) hoặc \(x = \frac{5}{2}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho ta thấy không có giá trị nào của x thỏa mãn

Vậy phương trình vô nghiệm.

Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 20:41

a) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)

Ta có: \(\dfrac{-\left(x^2+5\right)}{x^2-25}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-x^2-5}{\left(x-5\right)\left(x+5\right)}\)

Suy ra: \(3x-15+x^2+5x+x^2+5=0\)

\(\Leftrightarrow2x^2+8x-10=0\)

\(\Leftrightarrow2x^2+10x-2x-10=0\)

\(\Leftrightarrow2x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={1}

Yeutoanhoc
28 tháng 2 2021 lúc 16:30

`a,(-(x^2+5))/(x^2-25)=3/(x+5)+x/(x-5)`

`ĐK:x ne +-5`

`pt<=>-x^2+5=3(x-5)+x(x+5)`

`<=>-x^2+5=3x-15+x^2+5x`

`<=>-x^2+5=x^2+8x-15`

`<=>2x^2+8x-20=0`

`<=>x^2+4x-5=0`

`<=>x^2-x+5x-5=0`

`<=>x(x-1)+5(x-1)=0`

`<=>` $\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.$

Vậy `S={1,-5}`

Buddy
Xem chi tiết
Mai Trung Hải Phong
15 tháng 8 2023 lúc 19:54

\(a,2^{3x-1}=2^{-\left(x+1\right)}\Rightarrow3x-1=-\left(x+1\right)\Rightarrow x=\dfrac{1}{2}\)

\(b,ln\left(2e^{2x}\right)=ln5\)

\(\Rightarrow ln2+lne^{2x}=ln5\)

\(\Rightarrow ln2+2x=ln5\)

\(\Rightarrow2x=ln5-ln2=ln\dfrac{5}{2}\)

Như vậy \(x=\dfrac{1}{2}ln\dfrac{5}{2}\)

thuư nguyễn
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 4 2022 lúc 15:48

a.\(x^2-25=8\left(5-x\right)\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-8\left(5-x\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+8\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-13\end{matrix}\right.\)

b.\(\dfrac{x-2}{x+2}-\dfrac{2\left(x-11\right)}{x^2-4}=\dfrac{3}{x-2}\) ; \(ĐK:x\ne\pm2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x-2\right)-2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\left(x-2\right)^2-2\left(x-11\right)=3\left(x+2\right)\)

\(\Leftrightarrow x^2-4x+4-2x+22=3x+6\)

\(\Leftrightarrow x^2-9x+20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

 

illumina
Xem chi tiết
Tô Mì
23 tháng 9 2023 lúc 10:03

(a) Điều kiện: \(\left\{{}\begin{matrix}x+1\ge0\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>5\end{matrix}\right.\Rightarrow x>5\).

Phương trình tương đương: \(\sqrt{x+1}=2\sqrt{x-5}\)

\(\Leftrightarrow x+1=4\left(x-5\right)\Leftrightarrow x=7\left(TM\right)\).

Vậy: \(S=\left\{7\right\}.\)

 

(b) Phương trình tương đương: \(x^2-1=8\)

\(\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\).

Vậy: \(S=\left\{\pm3\right\}\)

Nguyễn Lê Phước Thịnh
23 tháng 9 2023 lúc 9:56

a: ĐKXĐ: x+1>=0 và x-5>0

=>x>5

\(\dfrac{\sqrt{x+1}}{\sqrt{x-5}}=2\)

=>\(\sqrt{\dfrac{x+1}{x-5}}=2\)

=>\(\dfrac{x+1}{x-5}=4\)

=>4x-20=x+1

=>3x=21

=>x=7

b: ĐKXĐ: \(x\in R\)

\(\sqrt[3]{x^2-1}=2\)

=>x^2-1=8

=>x^2=9

=>x=3 hoặc x=-3