giải phương trình \(\left[x+0,7\right]=-4\)
Giải phương trình:
\(a,7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right);\)
\(b,5x^3-2x^2-7x=0\).
Cakpan làm để mình kiểm tra cái nkaaa
a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 4,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x -3x + 5x = 4 + 4,5 + 3,5
⇔ 16x = 12
⇔ x = \(\dfrac{12}{16}=\dfrac{3}{4}\)
a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 3,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x - 3x + 5x = 4 + 3,5 + 3,5
⇔ 16x = 11
⇔ x = \(\dfrac{11}{16}\)
a. \(7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right)\)
\(\Rightarrow14x-3,5-3x-12=4-5x+3,5\)
\(\Rightarrow14x-3x+5x=4+3,5+3,5+12\)
\(\Rightarrow16x=23\)
\(\Rightarrow x=\dfrac{23}{16}\)
Vậy \(S=\left\{\dfrac{23}{16}\right\}\)
b. \(5x^3-2x^2-7x=0\)
\(\Rightarrow x\left(5x^2-2x-7\right)=0\)
\(\Rightarrow x\left(x-\dfrac{7}{5}\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{7}{5}=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{0;\dfrac{7}{5};-1\right\}\)
Giải các phương trình sau :
a) \(1,2-\left(x-0,8\right)=-2\left(0,9+x\right)\)
b) \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)
c) \(3\left(2,2-0,3x\right)=2,6+\left(0,1x-4\right)\)
d) \(3,60,5\left(2x+1\right)=x-0,25\left(2-4x\right)\)
a)\(1,2-x+0,8=-1,8-2x\)
\(2-x=-1,8-2x\)
\(2x-x=-1,8-2\)
\(x=-3,8\)
Vậy S={-3,8}
b)\(2,3x-1,4-4x=3,6-1,7x\)
\(2,3x-4x+1,7x=3,6+1,4\)
0=5(vô lí)
Vậy S={\(\varnothing\)}
c)\(6,6-0.9=2,6+0,1x-4\)
\(5,7=0,1x-1,4\)
\(-4,3=0,1x\)
\(x=-43\)
Câu c đáng lẽ là như thế này chứ.
c, 3(2.2-0.3x)=2.6+(0.1x-4)
<=> 6.6-0.9x=2.6+0.1x-4
<=> 6.6-0.9x=0.1x-1.4
<=>-0.9x -0.1x =-8
<=> -x=-8
<=> x=8
Mình trả lời câu d luôn nhé.
d, 3.6-0.5(2x+1)=x-0.25(2-4x)
<=> 3.6-x-0.5=x-0.5+x
<=> 3.1-x=2x-0.5
<=>-x-2x=-3.6
<=> -3x=-3.6
<=> x= 1.2
Giải phương trình:
\(2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\).
\(\begin{array}{l}2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\\\,\,\,\,\,2x - 1,4 - 1,6 = 1,5 - x - 1,2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x - 3 = 0,3 - x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x + x = 0,3 + 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3x = 3,3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1,1.\end{array}\)
Vậy phương trình có nghiệm \(x = 1,1.\)
Giải phương trình sau : \(\left|x-2\right|\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
TH1: \(x\ge2\)
\(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\sqrt{5}\left(loại\right)\\x=\sqrt{5}\end{matrix}\right.\)
TH2: \(x< 2\)
\(-\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\)
\(\Leftrightarrow\left(x^2-\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) (vô nghiệm)
Vậy \(x=\sqrt{5}\)
giải phương trình :
\(\left(x-2\right)\left(x-1\right)\left(x-8\right)\left(x-4\right)=4x^2\)
\(\left(x-2\right)\left(x-1\right)\left(x-4\right)\left(x-8\right)=4x^2\)
\(\Leftrightarrow[\left(x-2\right)\left(x-4\right)][\left(x-1\right)\left(x-8\right)]=4x^2\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-9x+8\right)=4x^2\)
thấy \(x=0;2\) không phải nghiệm của phương trình nên ta chia hai vế của pt cho \(x^2\) ta được \(:\)
\(\Leftrightarrow\left(x+\dfrac{8}{x}-9\right)\left(x+\dfrac{8}{x}-6\right)=4\)
\(Đặt:\) \(x+\dfrac{8}{x}=a\) thì pt trở thành \(:\)
\(\left(a-6\right)\left(a-9\right)=4\)
\(\Leftrightarrow a^2-15a+50=0\)
\(\Leftrightarrow\left(a-5\right)\left(a-10\right)=0\Leftrightarrow\left\{{}\begin{matrix}a=5\\a=10\end{matrix}\right.\)
\(Với\) \(a=5\) thì \(x+\dfrac{8}{x}=5\Leftrightarrow x^2-5x+8=0\left(vônghiem\right)\)
\(Với\) \(a=10\) thì \(x+\dfrac{8}{x}=10\Leftrightarrow x^2-10x+8=0\Leftrightarrow\left\{{}\begin{matrix}x=5-căn17\\x=5+căn17\end{matrix}\right.\)
\(Vậy...\)
giải phương trình sau:
\(\left(x-3\right)^4+\left(x-5\right)^4=16\)
Giải phương trình : \(\left|4^1_2x+3\right|-\left|x-1\right|=5\left(x-2\right)\)
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
Giải phương trình \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\dfrac{-3x^2}{4}\)
PT tương đương
\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)
Xét \(x=0\Rightarrow6.6=0\)(vô lý)
Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương
\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)
Đặt \(x+\dfrac{6}{x}+5=t\)
PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)
\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)
Đến đây bạn thay vào là tìm được nghiệm nhé.
Giải các phương trình sau: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
Đặt \(t=x-4\)
\(\Rightarrow\left(t+2\right)^4+\left(t-2\right)^4=82\)
\(\Leftrightarrow t^4+24t^2-25=0\Rightarrow\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left(x-4\right)^2=1\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Thật ra đặt cũng được, mà mình lười quá thì đành phanh toạch hết ra đi:vv
Ta có: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
\(\Leftrightarrow x^4-8x^3+24x^2-32x+16+x^4-24x^3+216x^2-864x+1296-82=0\)
<=> \(2x^4-32x^3+240x^2-896x+1230=0\)
<=> \(2\left(x-5\right)\left(x-3\right)\left(x^2-8x+41\right)=0\)
Vì \(x^2-8x+41\ne0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
Vậy tập nghiệm của pt là: S={3;5}