a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 4,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x -3x + 5x = 4 + 4,5 + 3,5
⇔ 16x = 12
⇔ x = \(\dfrac{12}{16}=\dfrac{3}{4}\)
a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 3,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x - 3x + 5x = 4 + 3,5 + 3,5
⇔ 16x = 11
⇔ x = \(\dfrac{11}{16}\)
a. \(7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right)\)
\(\Rightarrow14x-3,5-3x-12=4-5x+3,5\)
\(\Rightarrow14x-3x+5x=4+3,5+3,5+12\)
\(\Rightarrow16x=23\)
\(\Rightarrow x=\dfrac{23}{16}\)
Vậy \(S=\left\{\dfrac{23}{16}\right\}\)
b. \(5x^3-2x^2-7x=0\)
\(\Rightarrow x\left(5x^2-2x-7\right)=0\)
\(\Rightarrow x\left(x-\dfrac{7}{5}\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{7}{5}=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{0;\dfrac{7}{5};-1\right\}\)
a. 7(2x−0,5)− 3(x+4 ) =4− 5(x−0,7)
<=> 14x− 7/2 −3x−12=4−5x+ 7/2
<=>14x-3x -12-7/2 -4+5x -7/2 =0
<=> 16x-23 =0
<=> x= 23/16
b: Ta có: \(5x^3-2x^2-7x=0\)
\(\Leftrightarrow x\left(5x^2-2x-7\right)=0\)
\(\Leftrightarrow x\left(5x-7\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\\x=-1\end{matrix}\right.\)