Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)
Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)
Câu 1: Biểu thức rút gọn của: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\) là:
Câu 2: Cho A=\(3.\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)\) để có giá trị bằng 0 thì x bằng:
Câu 3: Tìm x biết: \(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
Câu 4: Tìm x biết: \(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
Câu 5: Giá trị của biểu thức A=\(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) với x=1;y=1,z=-1
Câu 6: Giá trị của x thỏa mãn \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\)
Caau 7: Giá trị x thỏa mãn: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) là:
Giải các phương trình sau:
a.\(\dfrac{5x-2}{2-2x}\)+\(\dfrac{2x-1}{2}\)=1-\(\dfrac{x^2+x-3}{1-x}\)
b.\(\dfrac{5-2x}{3}\)+\(\dfrac{\left(x+1\right)\left(x-1\right)}{3x-1}\)=\(\dfrac{\left(x+2\right)\left(1-3x\right)}{9x-3}\)
Giải phương trình:
\(a,7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right);\)
\(b,5x^3-2x^2-7x=0\).
Cakpan làm để mình kiểm tra cái nkaaa
Thực hiện phép tính
\(a,\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(b,\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(c,\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(d,\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
\(e,\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(f,\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(g,\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(h,\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
Bài 1 : rút gọn các biểu thức sau
A = \(\left(3x+1\right)^2-2\left(3x+1\right)\left(5x+5\right)+\left(5x+5\right)^2\)
B = \(\left(a+b+c\right)^2\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
C = \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Bài 2 : chứng minh các biểu thức sau không phụ thuộc vào biến x và y
A = \(\left(2x-1\right)\left(x^2+x-1\right)-\left(x-5\right)^2-2\left(x+1\right)\left(x^2-x+1\right)-7\left(x-2\right)\)
Giải các phương trình sau :
a)\(\dfrac{5x+2}{6}\)\(-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c)\(2x^3 +6x^2=x^2+3x\)
d)\(\left|x-4\right|+3x=5\)
Bài 1 : tìm các giá trị của x biết :
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
c) \(x^2=-6x-8\)
d) \(\frac{\left(x+1\right)^2}{3}-\frac{\left(x-2\right)^2}{3}=\frac{2x+1}{2}-\frac{\left(x-3\right)^2}{6}\)