GPT
\(x^2-3\sqrt[3]{3x-2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
Gpt:
Bài quá dễ tự làm đi
k mình mình giải cho
Bạn nói dễ mà bạn không chịu làm thì bạn nói làm gì ???
gpt:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(x^3+\frac{x^3}{(x-1)^3}+\frac{3x^2}{x-1}-2=0\)
b) ĐKXĐ: \(x\ne1\)
Ta có:
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}-2=0\)
Đặt \(\frac{x^2}{x-1}=a\)
Khi đó pt đã cho trở thành:
\(a^3-3a^2+3a-2=0\)
\(\Leftrightarrow\left(a-1\right)^3=1\Rightarrow a-1=1\Leftrightarrow a=2\)
Theo cách đặt: \(\frac{x^2}{x-1}=2\Rightarrow x^2=2x-2\Leftrightarrow x^2-2x+1=-1\Leftrightarrow\left(x-1\right)^2=-1\left(ptvn\right)\)
a) ĐKXĐ: \(x\ge8\)
Ta có:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(\Leftrightarrow x-9-\left(\sqrt{x-8}-1\right)-3\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x-9-\frac{x-9}{\sqrt{x-8}+1}-3.\frac{x-9}{\sqrt{x}+3}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1=0\end{cases}}\)
+) \(x-9=0\Leftrightarrow x=9\left(TMĐKXĐ\right)\)
+) \(\frac{3}{\sqrt{x}+3}=\frac{\sqrt{x-8}}{\sqrt{x-8}+1}\Rightarrow\sqrt{x\left(x-8\right)}=3\)
\(\Leftrightarrow x^2-8x-9=0\Leftrightarrow\orbr{\begin{cases}x=9TMĐKXĐ\\x=-1\left(KTMĐKXĐ\right)\end{cases}}\)
Vaayh pt có 1 nghiệm là x=9
a,GPT \(\sqrt{x^3+12}-3x=\sqrt{x^2+5}-5\)
b,Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)TÌM GTNN \(P=\frac{\sqrt{x}+1}{y+1}+\frac{\sqrt{y}+1}{z+1}+\frac{\sqrt{z}+1}{x+1}\)
b, Ta có
\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)
Mà \(y+1\ge2\sqrt{y}\)
=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)
Khi đó
\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)
=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)
Vậy MinP=3 khi x=y=z=1
Giải pt :
a) \(x^2+3x\sqrt[3]{3x+3}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
b) \(\sqrt{\left(x-1\right)\left(3-x\right)}+\sqrt{x+2}=\sqrt{x-1}+\sqrt{3-x}+\frac{x}{2}\)
gpt : a) \(\frac{5x}{\sqrt{4-x^2}}+\frac{8}{x^2}+\frac{2x}{4-x^2}+\frac{5\sqrt{4-x^2}}{x}+4=0\)
b) \(\frac{2x}{\sqrt{8x^2+25}}+\frac{125}{x^2}-14=0\)
c) \(\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
d) \(\sqrt{x^2-x+6}+\frac{4}{x-1}=x^2+x\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
\(c,\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x^2-3x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow x=1\)
Hoặc là: \(\Rightarrow\left(x+2\right)\left(x-1\right)\sqrt{3x-2}-2x\left(x-2\right)=0\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Còn cần nữa không, hôm bữa chị giải ra câu a mà quên béng mất, mấy hôm lại bận làm thuyết trình Tiếng Anh nên bỏ dở.
Giờ mà cần chị cũng chỉ làm được câu a thôi '-'
giải pt
a) \(x+\sqrt{x+8}\left(1-\sqrt{x+8}\right)=\sqrt{x}+\sqrt{x+3}-8\)
b) \(2\left(2-x\right)=\sqrt{2x-4}\left(\sqrt{5-x}-\sqrt{3x-3}\right)\)
c) \(\sqrt[3]{24+x}.\sqrt{12-x}-6\sqrt{12-x}=x-12\)
d) \(\frac{x-1}{2\sqrt{3-2x}-3}=\frac{x-1}{3-2\sqrt[3]{5+3x}}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))
\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(2\le x\le5\)
\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)
\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)
\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\le12\)
\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)
\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)
\(\Leftrightarrow a^3+a^2-12a=0\)
\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)
d/ ĐKXĐ: \(x\le\frac{3}{2}\) ; \(x\ne\frac{3}{8};x\ne-\frac{13}{24}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2\sqrt{3-2x}-3}-\frac{1}{3-2\sqrt[3]{5+3x}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{2\sqrt{3-2x}-3}=\frac{1}{3-2\sqrt[3]{5+3x}}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{3-2x}-3=3-2\sqrt[3]{5+3x}\)
\(\Leftrightarrow\sqrt[3]{5+3x}+\sqrt{3-2x}=3\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{5+3x}=a\\\sqrt{3-2x}=b\ge0\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}a+b=3\\2a^3+3b^2=19\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=3-a\\2a^3+3b^2=19\end{matrix}\right.\)
\(\Leftrightarrow2a^3+3\left(3-a\right)^2=19\)
\(\Leftrightarrow2a^3+3a^2-18a+8=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-4\\a=\frac{1}{2}\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{5+3x}=-4\\\sqrt[3]{5+3x}=\frac{1}{2}\\\sqrt[3]{5+3x}=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5+3x=-64\\5+3x=\frac{1}{8}\\5+3x=8\end{matrix}\right.\)
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)
ráng làm nốt rồi đi ngủ thoyy
1.
a) ĐK: \(x\ge2\)
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)
Vậy...
b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)
Vậy...
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
Nhân cả 2 vế với \(\sqrt{2}\) ta được :
\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)
Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)
2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)
Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)
Tương tự 2 trường hợp còn lại ta đều được \(B=0\)
Vậy \(B=0\)
gpt:
\(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
Giải phương trình: \(x^2+3x.\sqrt[3]{3x+2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
ĐKXĐ: z>0
pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)
<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)
<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)
<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)
<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)
<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)
<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)
vậy x=2