Những câu hỏi liên quan
Admin (a@olm.vn)
Xem chi tiết
Nguyễn Minh Đăng
22 tháng 3 2021 lúc 22:32

1) Trước hết ta sẽ chứng minh BĐT với 2 số

Với x,y,z,t > 0 ta luôn có: \(\frac{x^2}{y}+\frac{z^2}{t}\ge\frac{\left(x+z\right)^2}{y+t}\)

BĐT cần chứng minh tương đương:

\(BĐT\Leftrightarrow\frac{x^2t+z^2y}{yt}\ge\frac{\left(x+z\right)^2}{y+t}\Leftrightarrow\left(x^2t+z^2y\right)\left(y+t\right)\ge yt\left(x+z\right)^2\)

(Biến đổi tương đương)

Khi bất đẳng thức trên đúng ta sẽ CM như sau:

\(\frac{a^2}{\alpha}+\frac{b^2}{\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b\right)^2}{\alpha+\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b+c\right)^2}{\alpha+\beta+\gamma}\)

Dấu "=" xảy ra khi: \(\frac{a}{\alpha}=\frac{b}{\beta}=\frac{c}{\gamma}\)

Bình luận (0)
 Khách vãng lai đã xóa
Lê Hoàng Đạt
Xem chi tiết
Kuro Kazuya
22 tháng 2 2017 lúc 13:36

\(VT=a+b+c=\alpha.\frac{a}{\alpha}+\beta.\frac{b}{\beta}+\gamma.\frac{c}{\gamma}\)

Áp dụng phương pháp nhóm ABEL

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\alpha}+\frac{b}{\beta}\ge2\sqrt{\frac{ab}{\alpha\beta}}\left(1\right)\\\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\left(3\right)\end{matrix}\right.\)

Ta có \(ab\ge\alpha\beta\Rightarrow\frac{ab}{\alpha\beta}\ge1\) \(\Rightarrow2\sqrt{\frac{ab}{\alpha\beta}}\ge2\left(2\right)\)

Ta có \(abc\ge\alpha\beta\gamma\Rightarrow\frac{abc}{\alpha\beta\gamma}\ge1\Rightarrow3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\ge3\left(4\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}\ge2\)

\(\Rightarrow\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)\ge2\left(\beta-\gamma\right)\) ( 5 )

Từ ( 3 ) và ( 4 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\)

\(\Rightarrow\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge3\gamma\) ( 6 )

Theo đề bài ta có \(a\ge\alpha\Rightarrow\frac{a}{\alpha}\ge1\)\(\Rightarrow\left(\alpha-\beta\right)\frac{a}{\alpha}\ge\alpha-\beta\) ( 7 )

Từ ( 5 ) , ( 6 ) , ( 7 ) cộng theo từng vế

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge2\left(\beta-\gamma\right)+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge2\beta-2\gamma+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge\alpha+\beta+\gamma\)

\(\Leftrightarrow a+b+c\ge\alpha+\beta+\gamma\) ( đpcm )

Bình luận (0)
bach nhac lam
Xem chi tiết
Akai Haruma
5 tháng 1 2020 lúc 1:14

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
 Khách vãng lai đã xóa
tthnew
5 tháng 1 2020 lúc 14:10

Bài 2/Áp dụng BĐT Bunyakovski:

\(\left(x^2+y^2+z^2\right)\left(1^2+3^2+5^2\right)\ge\left(x+3y+5z\right)^2\)

\(\Rightarrow P\ge\frac{\left(x+3y+5z\right)^2}{35}\) (*)

Ta có: \(x+3y+5z=x.1+\frac{y}{3}.9+\frac{z}{5}.25\)

\(=\frac{16z}{5}+8\left(\frac{y}{3}+\frac{z}{5}\right)+1\left(\frac{z}{5}+\frac{y}{3}+x\right)\)

\(\ge16+8.2+1.3=35\). Thay vào (*) là xong.

Đẳng thức xảy ra khi x = 1; y =3; z = 5

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
23 tháng 12 2019 lúc 10:44
Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Buddy
Xem chi tiết
HT.Phong (9A5)
26 tháng 8 2023 lúc 13:31

Ta có: 

A. \(\alpha< \beta\)

\(\Rightarrow\left(0,3\right)^{\alpha}>\left(0,3\right)^{\beta}\)

Sai 

B. \(\alpha< \beta\)

\(\Rightarrow\pi^{\alpha}< \pi^{\beta}\)

Sai

C. \(\alpha< \beta\)

\(\Rightarrow\left(\sqrt{2}\right)^{\alpha}< \left(\sqrt{2}\right)^{\beta}\)

Đúng

D. \(\alpha< \beta\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{\alpha}>\left(\dfrac{1}{2}\right)^{\beta}\)

Sai 

⇒ Chọn C

Bình luận (0)
Nguyễn Đức Trường
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Lê Song Phương
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2023 lúc 0:24

Chọn A

Bình luận (0)
Quoc Tran Anh Le
22 tháng 9 2023 lúc 10:43

+) Xét \(\beta  =  - \alpha \), khi đó:

\(\begin{array}{l}cos\beta  = cos\left( {-{\rm{ }}\alpha } \right) = cos\alpha ;\\sin\beta  = sin\left( {-{\rm{ }}\alpha } \right) = -sin\alpha  \Leftrightarrow sin\alpha  = -sin\beta .\end{array}\)

Do đó A thỏa mãn.

Đáp án: A

Bình luận (0)