\(VT=a+b+c=\alpha.\frac{a}{\alpha}+\beta.\frac{b}{\beta}+\gamma.\frac{c}{\gamma}\)
Áp dụng phương pháp nhóm ABEL
\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{\begin{matrix}\frac{a}{\alpha}+\frac{b}{\beta}\ge2\sqrt{\frac{ab}{\alpha\beta}}\left(1\right)\\\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\left(3\right)\end{matrix}\right.\)
Ta có \(ab\ge\alpha\beta\Rightarrow\frac{ab}{\alpha\beta}\ge1\) \(\Rightarrow2\sqrt{\frac{ab}{\alpha\beta}}\ge2\left(2\right)\)
Ta có \(abc\ge\alpha\beta\gamma\Rightarrow\frac{abc}{\alpha\beta\gamma}\ge1\Rightarrow3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\ge3\left(4\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}\ge2\)
\(\Rightarrow\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)\ge2\left(\beta-\gamma\right)\) ( 5 )
Từ ( 3 ) và ( 4 )
\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\)
\(\Rightarrow\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge3\gamma\) ( 6 )
Theo đề bài ta có \(a\ge\alpha\Rightarrow\frac{a}{\alpha}\ge1\)\(\Rightarrow\left(\alpha-\beta\right)\frac{a}{\alpha}\ge\alpha-\beta\) ( 7 )
Từ ( 5 ) , ( 6 ) , ( 7 ) cộng theo từng vế
\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge2\left(\beta-\gamma\right)+3\gamma+\alpha-\beta\)
\(\Rightarrow VT\ge2\beta-2\gamma+3\gamma+\alpha-\beta\)
\(\Rightarrow VT\ge\alpha+\beta+\gamma\)
\(\Leftrightarrow a+b+c\ge\alpha+\beta+\gamma\) ( đpcm )