2x^2-(2-m)x-3=0
Tìm x)
x(1-2x) +(x-2).(2x-3) = 0
x(2x -4) -2x (x+3) =0
(2x+3)2+(x-3).(2x+3) =0
10y2 -2xy +25 +x2 +30y
(2x-1)2 +(2x+1)2 -2(2x-2)(2x+1) +x = 12
a/
\(\Leftrightarrow x-2x^2+2x^2-3x-4x+6=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Leftrightarrow x=1\)
b/
\(\Leftrightarrow2x^2-4x-2x^2-6x=0\)
\(\Leftrightarrow-10x=0\)
\(\Leftrightarrow x=0\)
c/
\(\Leftrightarrow\left(2x+3\right)\left(2x+3+x-3\right)=0\)
\(\Leftrightarrow3x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(9y^2+30y+25\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(3y+5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=-\frac{5}{3}\)
d/
\(\Leftrightarrow4x^2-4x+1+4x^2+4x+1-2\left(4x^2-2x-2\right)+x=12\)
\(\Leftrightarrow8x^2+x+2-8x^2+4x+4=12\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
Tìm x biết:
a)(x+3)^2+(x-2)(x+2)-2(x+1)=7
b)x(2x-1)-(x-2)(2x+3)=0
c)(x-1)(x+2)-x-2=0
d)x[(3x+2)+(x+1)^2-(2x-5)(2x+5)]=0
đ) 2x^2-7x+5=0
e) (2x+3)(x-5)=(2x+1)(2×+3)
chúc bạn học giỏi
a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)
\(\Leftrightarrow2x^2+4x-4=0\)
\(\Leftrightarrow x^2+2x-2=0\)
\(\Leftrightarrow x^2+2x+1-3=0\)
\(\Leftrightarrow\left(x+1\right)^2=3\)
hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)
b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)
\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)
=>6=0(vô lý)
c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
=>x=-2 hoặc x=2
đ: \(\Rightarrow2x^2-2x-5x+5=0\)
=>(x-1)(2x-5)=0
=>x=1 hoặc x=5/2
1) Tìm x và y biết
a) (2x+1)^2 + y^2 = 0
b) x^2 +2x+1+(y-1)^2 = 0
c) x^2 - 2x+y^2 + 45y + 5 = 0
2) Tìm x biết
a) x(5-2x) - 2x(1-x) = 15
b) (x-3)^2 - 16+0
c) (2x-1)^2 + (x+3)^2- 5(x+7)(x-7) = 0
1) Tìm x và y biết
a) (2x+1)2 + y2 = 0
Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)
Để \(\left(2x+1\right)^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)
b) x2 + 2x + 1 + (y-1)2 = 0
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)
Lập luận tương tự câu a ,ta có :
\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c) x2 - 2x + y2 + 4y + 5 = 0
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Lập luận tương tự 2 câu trên
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Đề: Tìm x
a)2x.(3x+5)-x.(6x-1)=33 k)5(x+3)-2x(x+3)=0
b)x(3x-1)+12x-4=0 i)5x(x-2)-(2-x)=0
c)5x(2x+1)-12x-6=0 m)x(x-1)-2(1-x)=0
d)x3-5x2+4x-20=0
e)2x3-5x2+2x-5=0
g)(x-2)3-x(x+1).(x-1)+62=5
a)2x.(3x+5)-x.(6x-1)=33
=>\(6x^2+10x-6x^2+x=33\)
=>11x=33
=>x=3
b)x(3x-1)+12x-4=0
=>x(3x-1)+4(3x-1)=0
=>(x-4)(3x-1)=0
=>x-4=0 hoặc 3x-1=0
+)x-4=0 +)3x-1=0
=>x=4 =>x=\(\frac{1}{3}\)
c)5x(2x+1)-12x-6=0
=>10x\(^2\)+5x-12x-6=0
=>10x\(^2\)-7x-6=0
=>(10x\(^2\)+5x)-(12x+6)=0
=>5x(2x+1)-6(2x+1)=0
=>(5x-6)(2x+1)=0
=>\(\left[{}\begin{matrix}5x-6=0\\2x+1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{6}{5}\\x=\frac{-1}{2}\end{matrix}\right.\)
M=(2x+3).(2x-3)-2.(x+5)-2.(x-1).(x+2)
Rút gọn M
Tính M khi x=0
Tìm x để M=0
\(M=4x^2-9-2x-10-2\left(x^2+x-2\right)\)
\(=4x^2-2x-19-2x^2-2x+4\)
\(=2x^2-4x-15\)
Khi x=0 thì M=-15
Tìm x, biết:
a) 3x(4x-3) - 2x(5-6x) = 0
b) 5(2x-3) + 4x(x-2) + 2x(3-2x) = 0
c) 3x(2-x) + 2x(x-1) = 5x(x+3)
d) 3x(x+1) - 5x(3-x) + 6(x2 + 2x + 3) = 0
a) Ta có: 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)
b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
hay \(x=\frac{15}{8}\)
Vậy: \(x=\frac{15}{8}\)
c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)
\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)
\(\Leftrightarrow-6x^2-11x=0\)
\(\Leftrightarrow6x^2+11x=0\)
\(\Leftrightarrow x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)
d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
\(\Leftrightarrow14x^2=-18\)
mà \(14x^2\ge0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(x\in\varnothing\)
Tìm x
1.x^2-2x-1=0
2.x^2-x-1=0
3.x^2+x-3=0
4.4x^2-4x-1=0
5.4x^2-2x-1=0
6.4x^2-x-1=0
7.2x^2-2x-3=0
8.3x^2+3x-1=0
1)x^2-2x-1=0
<=> (x^2-2x+1)-2=0
<=>(x-1)2 =2
=>x-1 = \(\pm\sqrt{2}\)
=> x= \(\pm\sqrt{2}\) +1
2) x^2-x-1=0
<=> (x^2-x+1/4) -5/4=0
<=>(x+1/2)2= 5/4
=> x+1/2 = \(\pm\sqrt{\dfrac{5}{4}}\)
=>x=\(\pm\sqrt{\dfrac{5}{4}}\) - 1/2
3)x^2+x-3=0
<=> (x^2 + x + 1/4) -13/4=0
<=>(x+1/2)2 = 13/4
=> x+1/2 = \(\sqrt{\dfrac{13}{4}}\)
=> x= \(\sqrt{\dfrac{13}{4}}\) -1/2
4) 4x^2-4x-1=0
<=> (4x^2-4x+1)-2=0
<=>(2x-1)2 -2=0
<=> (2x-1)2 - \(\left(\sqrt{2}\right)^2\) =0
<=> (2x-1 - \(\sqrt{2}\) ) . (2x-1 +\(\sqrt{2}\) )=0
=> 2x-1-\(\sqrt{2}\) =0 hoặc 2x-1+\(\sqrt{2}\) =0
=> 2x= 1+\(\sqrt{2}\) hoặc 2x= 1 - \(\sqrt{2}\)
=> x=\(\dfrac{1+\sqrt{2}}{2}\) hoặc x=\(\dfrac{1-\sqrt{2}}{2}\)
tìm x biết
a) (2x+1)×(1-2x)+(2x - 1) ^2=22
b) (x-5)^2+(x-3)×(x+3)-2×(x+1)^2=0
c) (2x+3)^2+(2x -3)^2-2×(4x^2-9)=0
a) \(\left(2x+1\right)\left(1-2x\right)+\left(2x-1\right)^2=22\)
\(\Rightarrow\left(1+2x\right)\left(1-2x\right)+\left[\left(2x\right)^2-2.2x+1^2\right]=22\)
\(\Rightarrow1^2-\left(2x\right)^2+\left(4x^2-4x+1\right)=22\)
\(\Rightarrow1-4x^2+4x^2-4x+1=22\)
\(\Rightarrow2-4x=22\)
\(\Rightarrow-4x=22-2=20\)
\(\Rightarrow x=20:\left(-4\right)=-5\)
b/ \(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2.\left(x+1\right)^2=0\)
\(\Rightarrow\left(x^2-2.x.5+5^2\right)+\left(x^2-3^2\right)+2.\left(x^2+2.x.1+1^2\right)=0\)
\(\Rightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)
\(\Rightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)
\(\Rightarrow-14x+14=0\)
\(\Rightarrow-14x=0-14=-14\)
\(\Rightarrow x=\left(-14\right):\left(-14\right)=1\)
b/\(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-10x+25+x^2-3^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)
\(\Leftrightarrow14x=14\Leftrightarrow x=1\)
c/\(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)=0\)
\(\Leftrightarrow4x^2+12x+9+4x^2-12x+9-8x^2+18=0\)
\(\Leftrightarrow0x=-36\Leftrightarrow x=0\)
a/\(\left(2x+1\right).\left(1-2x\right)+\left(2x-1\right)^2=22\Leftrightarrow2x-4x^2+1-2x+4x^2-4x+1=22\Leftrightarrow-4x=20\Leftrightarrow x=-5\)
Câu 1:giải các bất phương trình sau
a |x²-2x|<= 3
b |x²-2x|>3
c |x²-2x|<=x²+1
d |x²-2x|>=x-2
e -x²+5x-4/(2x+1)(-x+3)>=0
f -x²+5x+6/(-2x+2)(x+3)<=0
g (-x²+5x-4)(x-2)/x²+5x+6>0
Câu 2:
a (m-1)x²+2(m+1)x+3m+3>0 nghiệm đúng với mọi x €R
b (m-1)x²+2(m+1)x+3m+3<=0 nghiệm đúng với mọi x€R
c (m+1)x²+2(m-1)x-3m+3>= vô nghiệm
d (m+1)x²+2(m-1)x-3m+3<0 vô nghiệm
Tìm m để hệ bất phương trình : có nghiệm, vô nghiệm
a)
b)
c)
d)
e)