a) \(\left(2x+1\right)\left(1-2x\right)+\left(2x-1\right)^2=22\)
\(\Rightarrow\left(1+2x\right)\left(1-2x\right)+\left[\left(2x\right)^2-2.2x+1^2\right]=22\)
\(\Rightarrow1^2-\left(2x\right)^2+\left(4x^2-4x+1\right)=22\)
\(\Rightarrow1-4x^2+4x^2-4x+1=22\)
\(\Rightarrow2-4x=22\)
\(\Rightarrow-4x=22-2=20\)
\(\Rightarrow x=20:\left(-4\right)=-5\)
b/ \(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2.\left(x+1\right)^2=0\)
\(\Rightarrow\left(x^2-2.x.5+5^2\right)+\left(x^2-3^2\right)+2.\left(x^2+2.x.1+1^2\right)=0\)
\(\Rightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)
\(\Rightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)
\(\Rightarrow-14x+14=0\)
\(\Rightarrow-14x=0-14=-14\)
\(\Rightarrow x=\left(-14\right):\left(-14\right)=1\)
b/\(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-10x+25+x^2-3^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)
\(\Leftrightarrow14x=14\Leftrightarrow x=1\)
c/\(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)=0\)
\(\Leftrightarrow4x^2+12x+9+4x^2-12x+9-8x^2+18=0\)
\(\Leftrightarrow0x=-36\Leftrightarrow x=0\)
a/\(\left(2x+1\right).\left(1-2x\right)+\left(2x-1\right)^2=22\Leftrightarrow2x-4x^2+1-2x+4x^2-4x+1=22\Leftrightarrow-4x=20\Leftrightarrow x=-5\)