Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miner Đức
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Akai Haruma
24 tháng 8 2021 lúc 18:13

a. ĐKXĐ: $x\geq 2$ hoặc $x=1$

PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$

$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)

b.

PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$

$\Leftrightarrow |x-2|=|2x-3|$

\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)

Akai Haruma
24 tháng 8 2021 lúc 18:14

c. ĐKXĐ: $x=2$ hoặc $x\geq 3$

PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$

\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)

d.

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 0:01

a: Ta có: \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Leftrightarrow x^2-3x+2=x-1\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=-x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)

c: Ta có: \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-5x+6=x-2\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Genevieve Hà
Xem chi tiết
ILoveMath
2 tháng 9 2021 lúc 10:27

a, ĐKXĐ: \(x^2-4x+4\ge0\Rightarrow\left(x-2\right)^2\ge0\left(luônđúng\right)\)

 \(\sqrt{x^2-4x+4}=1\\ \Rightarrow x-2=1\\ \Rightarrow x=3\)

b,\(ĐKXĐ:1-4x+4x^2\ge0\Rightarrow\left(1-2x\right)^2\ge0\left(luônđúng\right)\)

 \(\sqrt{1-4x+4x^2}=5\\ \Rightarrow\left|1-2x\right|=5\\ \Rightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

d, ĐKXĐ: \(\left\{{}\begin{matrix}9x^2\ge0\\2x+1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x\ge0\)

\(\sqrt{9x^2}=2x+1\\ \Rightarrow\left|3x\right|=2x+1\\ \Rightarrow\left[{}\begin{matrix}3x=2x+1\\3x=-2x+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

ILoveMath
2 tháng 9 2021 lúc 10:31

c, ĐKXĐ: \(1-2x+x^2\ge0\Rightarrow\left(1-x\right)^2\ge0\left(luônđúng\right)\)

 \(\sqrt{1-2x+x^2}-6=0\\ \Rightarrow\left|1-x\right|=6\\ \Rightarrow\left[{}\begin{matrix}1-x=-6\\1-x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)

e, \(\left\{{}\begin{matrix}9-6x+x^2\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3-x\right)^2\ge0\left(luônđúng\right)\\x\ge0\end{matrix}\right.\)\(\Rightarrow x\ge0\)

\(\sqrt{9-6x+x^2}=x\\ \Rightarrow\left|3-x\right|=x\\ \Rightarrow\left[{}\begin{matrix}3-x=-x\\3-x=x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3=0\left(vôlí\right)\\x=1,5\end{matrix}\right.\)

Lấp La Lấp Lánh
2 tháng 9 2021 lúc 10:33

a) \(\sqrt{x^2-4x+4}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b) \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\Leftrightarrow\left|1-2x\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

c) \(\sqrt{x\left(1-2x+x^2\right)}-6=0\)

\(\Leftrightarrow\left(\sqrt{x\left(1-x\right)^2}\right)^2=36\Leftrightarrow x\left(1-x\right)^2=36\)

\(\Leftrightarrow x-2x^2+x^3-36=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+2x+9\right)=0\)

\(\Leftrightarrow x=4\)(do \(x^2+2x+9=\left(x+1\right)^2+8>0\))

d) \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow3\left|x\right|=2x+1\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\\-3x=2x+1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{5}\end{matrix}\right.\)

e) \(\sqrt{9-6x+x^2}=x\left(1\right)\left(đk:x\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(3-x\right)^2}=x\Leftrightarrow\left|3-x\right|=x\)

TH1: \(0\le x\le3\)

\(\left(1\right)\Leftrightarrow3-x=x\Leftrightarrow x=\dfrac{3}{2}\)

TH2: \(x>3\)

\(\left(1\right)\Leftrightarrow x-3=x\Leftrightarrow-3=0\left(vn\right)\)

 

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:41

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

Đinh Cẩm Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 21:22

c: Ta có: \(\sqrt{x^2}=x\)

\(\Leftrightarrow\left|x\right|=x\)

hay \(x\ge0\)

d: Ta có: \(\sqrt{x^2-2x+1}=x-1\)

\(\Leftrightarrow\left|x-1\right|=x-1\)

hay \(x\ge1\)

Lê Kiều Trinh
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 11 2021 lúc 8:32

\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)

Xem chi tiết
Hà Thị Thanh Xuân
Xem chi tiết
phan tuấn anh
25 tháng 7 2016 lúc 20:59

a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

     <=>\(\left|x-2\right|+\left|x-3\right|=1\)

đến đây chia 3 trường hợp để phá trị tuyệt đối là ra 

b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)

câu này cũng tương tự câu a nha

Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:01

Mn giúp e với ak

Minh Hiếu
18 tháng 9 2021 lúc 15:06

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)