a, ĐKXĐ: \(x^2-4x+4\ge0\Rightarrow\left(x-2\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{x^2-4x+4}=1\\ \Rightarrow x-2=1\\ \Rightarrow x=3\)
b,\(ĐKXĐ:1-4x+4x^2\ge0\Rightarrow\left(1-2x\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{1-4x+4x^2}=5\\ \Rightarrow\left|1-2x\right|=5\\ \Rightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
d, ĐKXĐ: \(\left\{{}\begin{matrix}9x^2\ge0\\2x+1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x\ge0\)
\(\sqrt{9x^2}=2x+1\\ \Rightarrow\left|3x\right|=2x+1\\ \Rightarrow\left[{}\begin{matrix}3x=2x+1\\3x=-2x+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c, ĐKXĐ: \(1-2x+x^2\ge0\Rightarrow\left(1-x\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{1-2x+x^2}-6=0\\ \Rightarrow\left|1-x\right|=6\\ \Rightarrow\left[{}\begin{matrix}1-x=-6\\1-x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
e, \(\left\{{}\begin{matrix}9-6x+x^2\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3-x\right)^2\ge0\left(luônđúng\right)\\x\ge0\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(\sqrt{9-6x+x^2}=x\\ \Rightarrow\left|3-x\right|=x\\ \Rightarrow\left[{}\begin{matrix}3-x=-x\\3-x=x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3=0\left(vôlí\right)\\x=1,5\end{matrix}\right.\)
a) \(\sqrt{x^2-4x+4}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
c) \(\sqrt{x\left(1-2x+x^2\right)}-6=0\)
\(\Leftrightarrow\left(\sqrt{x\left(1-x\right)^2}\right)^2=36\Leftrightarrow x\left(1-x\right)^2=36\)
\(\Leftrightarrow x-2x^2+x^3-36=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+2x+9\right)=0\)
\(\Leftrightarrow x=4\)(do \(x^2+2x+9=\left(x+1\right)^2+8>0\))
d) \(\sqrt{9x^2}=2x+1\)
\(\Leftrightarrow3\left|x\right|=2x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\\-3x=2x+1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{5}\end{matrix}\right.\)
e) \(\sqrt{9-6x+x^2}=x\left(1\right)\left(đk:x\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(3-x\right)^2}=x\Leftrightarrow\left|3-x\right|=x\)
TH1: \(0\le x\le3\)
\(\left(1\right)\Leftrightarrow3-x=x\Leftrightarrow x=\dfrac{3}{2}\)
TH2: \(x>3\)
\(\left(1\right)\Leftrightarrow x-3=x\Leftrightarrow-3=0\left(vn\right)\)
a: ta có: \(\sqrt{x^2-4x+4}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b: ta có: \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\left|2x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)