Giải phương trình
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
giải phương trình \(\sqrt{x-4\sqrt{x-1}+3}+\sqrt{x-6\sqrt{x-1}+8}=1\)
\(\sqrt{x-4\sqrt{x-1}+3}+\sqrt{x-6\sqrt{x-1}+8}=1\\ < =>\sqrt{x-1-2\sqrt{x-1}.2+4}+\sqrt{x-1-2\sqrt{x-1}.3+9}=1\\ < =>\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)ĐK: x>=1
\(< =>|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1\\ < =>\left(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\right)^2=1\\ < =>\sqrt{x-1}-2+2\left|\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-3\right)\right|+\sqrt{x-1}-3=1\\ < =>2\sqrt{x-1}-5+2\left|x+5-5\sqrt{x-1}\right|=1\\ < =>2\left|x+5-5\sqrt{x-1}\right|=6-2\sqrt{x-1}\\ < =>\left|x+5-5\sqrt{x-1}\right|=3-\sqrt{x-1}\)
\(< =>\left[{}\begin{matrix}x+5-5\sqrt{x-1}=3-\sqrt{x-1}\left(1\right)\\x+5-5\sqrt{x-1}=\sqrt{x-1}-3\left(2\right)\end{matrix}\right.\)
Giải (1): \(x+5-5\sqrt{x-1}=3-\sqrt{x-1}\\ < =>x+2-4\sqrt{x-1}=0\\ < =>x-1-2\sqrt{x-1}.2+4=1\\ < =>\left(\sqrt{x-1}-2\right)^2=1\\ < =>\left[{}\begin{matrix}\sqrt{x-1}-2=1\\\sqrt{x-1}-2=-1\end{matrix}\right.< =>\left[{}\begin{matrix}x=8\\x=0\left(loại\right)\end{matrix}\right.\)
Giải (2) cũng ra x=8
GIẢI PHƯƠNG TRÌNH: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}=}2\sqrt{2}\)
Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
Giải phương trình :\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3+\sqrt{x-1}\right)^2}=5\)
\(\Leftrightarrow|2-\sqrt{x-1}|+3+\sqrt{x-1}=5\)
\(\Leftrightarrow\orbr{\begin{cases}2-\sqrt{x-1}+\sqrt{x-1}=2\\\sqrt{x-1}-2+\sqrt{x-1}=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}1\le x\le5\\x=5\end{cases}}\)
\(\Rightarrow1\le x\le5\)
Giải phương trình
\(\sqrt{x+3-4\sqrt{x+1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Sủa đề : Giải phương trình \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}+1\)
ĐKXĐ : \(x\ge1\)
\(pt\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Ta thấy : \(VT=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\)
\(\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\Rightarrow5\le x\le10\)(TM ĐKXĐ)
Vậy \(5\le x\le10\)
GIẢI PHƯƠNG TRÌNH
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
Bài làm:
Ta có: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
xong tới đây blabla tiếp nha, mk ms lp 8 nên cx chưa chuyên sâu lắm
Ta có: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) (ĐKXĐ: x \(\ge\)1)
<=> \(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
<=> \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
<=> \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
<=> \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=1\)
Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=\left|1\right|=1\)
Dấu "=" xảy ra <=> \(\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\)
TH1: \(\hept{\begin{cases}\sqrt{x-1}-2\ge0\\3-\sqrt{x-1}\ge0\end{cases}}\) <=> \(\hept{\begin{cases}\sqrt{x-1}\ge2\\0\le\sqrt{x-1}\le3\end{cases}}\) <=> \(\hept{\begin{cases}x\ge5\\1\le x\le10\end{cases}}\)=> \(5\le x\le10\)
TH2: \(\hept{\begin{cases}\sqrt{x-1}-2\le0\\3-\sqrt{x-1}\le0\end{cases}}\) <=> \(\hept{\begin{cases}0\le\sqrt{x-1}\le2\\\sqrt{x-1}\ge3\end{cases}}\) <=> \(\hept{\begin{cases}1\le x\le5\\x\ge10\end{cases}}\)(loại)
Vậy S = \(\left\{x\left|5\le x\le10\right|\right\}\)
Mik cũng lớp 8
Giải phương trình:
a) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
b) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
c) \(\dfrac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
Câu 2: Giải các phương trình sau:
a. \(\sqrt{4x-8}\) - \(\sqrt{x-2}\) - 4 + \(\dfrac{1}{3}\)\(\sqrt{9x-18}\)
b. \(\sqrt{x^2-6x+9}\) - \(\dfrac{\sqrt{6+\sqrt{3}}}{\sqrt{2}+1}\)=0
b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
ĐKXĐ x\(\ge\) 1
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}=1\)
<=>\(\sqrt{x-1-4.\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)
<=>\(2\sqrt{x-1}-5=1\) <=>\(2\sqrt{x-1}=6\)
<=>\(\sqrt{x-1}=3\Leftrightarrow x-1=9\Leftrightarrow x=10\)
mik chỉ cho kết quả thoy nhaq chứ mik ko bik giải đâu
7,326731287
Giải phương trình:
`c) x^2 - 6. sqrt(x^2 +5) + x = 2.sqrt(x-1) - 14`
`d) x^2 - sqrt((x^2-8).(x-2)) +x = sqrt(x^2 - 8) + sqrt(x-2) +9`
c: \(x^2-6\sqrt{x^2+5}+x=2\sqrt{x-1}-14\)
=>\(x^2-4-6\left(\sqrt{x^2+5}-3\right)+x-2-2\sqrt{x-1}+2=0\)
=>\(\left(x-2\right)\left(x+2\right)-6\cdot\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}+\left(x-2\right)-2\cdot\dfrac{x-1-1}{\sqrt{x-1}+1}=0\)
=>\(\left(x-2\right)\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x-2\right)\left(x+2\right)+\left(x-2\right)-2\cdot\dfrac{x-2}{\sqrt{x-1}+1}=0\)
=>\(\left(x-2\right)\left[\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x+2\right)+1-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)
=>x-2=0
=>x=2
d: \(x^2-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x=\sqrt{x^2-8}+\sqrt{x-2}+9\)
=>\(x^2-9-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x-\sqrt{x^2-8}-\sqrt{x-2}=0\)
=>\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\sqrt{x^3-2x^2-8x+16}+x-3+1-\sqrt{x^2-8}+2-\sqrt{x-2}=0\)
=>\(\left(x-3\right)\left(x+3\right)+\left(x-3\right)-\sqrt{x^3-2x^2-8x+16}+1+\dfrac{1-x^2+8}{1+\sqrt{x^2-8}}+1-\sqrt{x-2}=0\)
=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+16-1}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}+\dfrac{1-x+2}{1+\sqrt{x-2}}=0\)
=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+15}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\dfrac{\left(x-3\right)\left(x^2+x-5\right)}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+4\right)-\dfrac{x^2+x-5}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{x+3}{\sqrt{x^2-8}+1}-\dfrac{1}{\sqrt{x-2}+1}\right]=0\)
=>x-3=0
=>x=3