Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PHAM THANH THUONG
Xem chi tiết
Pham Thanh Thuong
Xem chi tiết
Lê Hà Vy
Xem chi tiết
Đỗ Hoàng Dương
29 tháng 11 2021 lúc 19:36

sao tổng lại lớn hơn hiệu

Khách vãng lai đã xóa
Nguyễn Thùy Dương
Xem chi tiết
dang huynh
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
Trần Linh Nga
Xem chi tiết
Akai Haruma
3 tháng 7 2019 lúc 21:49

1.

Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)

\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)

\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)

\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)

\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)

2.

\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)

\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)

\(=(a-1)^2\)

3.

\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)

Akai Haruma
3 tháng 7 2019 lúc 21:59

4. Bạn xem lại đề xem đã đúng chưa?

5.

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)

\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)

Công chúa vui vẻ
Xem chi tiết
Akai Haruma
8 tháng 9 2019 lúc 10:56

Lời giải:

ĐKXĐ:..................

\(\left(\frac{2}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{a}}{a\sqrt{a}+b\sqrt{b}}.\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\right):4\sqrt{ab}=\left(\frac{2(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}-\frac{2\sqrt{a}}{(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)}.\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\right):4\sqrt{ab}\)

\(=\left(\frac{2\sqrt{a}+2\sqrt{b}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}-\frac{2\sqrt{a}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}\right).\frac{1}{4\sqrt{ab}}=\frac{2\sqrt{b}}{a-b}.\frac{1}{4\sqrt{ab}}=\frac{1}{2\sqrt{a}(a-b)}\)

Nguyễn Minh Phương
Xem chi tiết
Thùy Ninh
15 tháng 7 2017 lúc 15:23

Đây là đề chứng minh hả !

Phần a , b đúng r 

Nhưng phần b chỗ \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2\) = a - b 

Dùng hằng đẳng thức thức 3 như vậy sẽ hay hơn !

Chúc bạn học tốt!

14082006
6 tháng 8 2018 lúc 9:10

nhưng bn làm đúng rùi mà

Phạm Bá Nhật Khánh
Xem chi tiết