tìm GTNN
B=/x-10/+/20-x/
Tìm GTNN
B= -14+2X^2+X
B=2(x^2+2.x.1/4 +1/16)^2 -57/8
=2.(x+1/4)^2 -57/8
MinB=-57/8 khi x=-1/4
\(B=-14+2x^2+x=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{113}{8}=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\)\(ĐTXR\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=2x^2+x-14\)
\(=2\left(x^2+\dfrac{1}{2}x-7\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{113}{16}\right)\)
\(=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{4}\)
tìm GTNN
B=x^2+y^2-2x+4y+2010
`B=x^2 +y^2 -2x+4y+2010`
`=x^2 -2x+1+y^2 +4y+4+2005`
`=(x-1)^2 + (y+2)^2 +2005 >= 2005`
Dấu "=" xảy ra `<=>{(x-1=0),(y+2=0):}<=>{(x=1),(y=-2):}`
Vậy `B_(min) = 2005 <=> {(x=1),(y=-2):}`
`B=x^2+y^2-2x+4y+2010`
`B=x^2-2x+y^2+4y+2010`
`B= x^2-2.x.1+1^2-1^2 +y^2+2y.2+2^2-2^2+2010`
`B= (x^2-2x+1)+(y^2+4y+4)-1-4+2010`
`B= (x-1)^2 +(y+2)^2 +2005≥2005`
nên `B` đạt GTNN là `B=2005`
khi đó \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\) `<=>`\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
tìm m để pt \(x^2-2\left(m+1\right)x+5m+1=0\)
có nghiệm x1;x2 sao cho
a,S=x1^2+x2^2-x1x2 đạt gtnn
b, 1<x1<x2
\(\Delta'=\left(m+1\right)^2-\left(5m+1\right)=m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5m+1\end{matrix}\right.\)
a.
\(S=\left(x_1+x_2\right)^2-3x_1x_2=4\left(m+1\right)^2-3\left(5m+1\right)\)
\(=4m^2-7m+1=\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2+1\ge1\)
\(S_{min}=1\) khi \(\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2=0\Rightarrow m=0\)
b.
\(1< x_1< x_2\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2>2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5m+1-2\left(m+1\right)+1>0\\2\left(m+1\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\) \(\Rightarrow m>0\)
Kết hợp điều kiện delta \(\Rightarrow m\ge3\)
\(a,\Leftrightarrow\Delta\ge0\Leftrightarrow\left(2m+2\right)^2-4\left(5m+1\right)\ge0\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge3\end{matrix}\right.\)
\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=5m+1\end{matrix}\right.\)
\(\Rightarrow S=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)
\(=\left(2m+2\right)^2-3\left(5m+1\right)=4m^2-7m+1\)
\(=\left(2m\right)^2-2.2.\dfrac{7}{4}.m+\left(\dfrac{7}{4}\right)^2-\dfrac{33}{16}=\left(2m-\dfrac{7}{4}\right)^2-\dfrac{33}{16}\left(1\right)\)
\(TH1:m\ge3\Rightarrow\left(1\right)\ge\left(2.3-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=16\)
\(TH2:m\le0\Rightarrow\left(1\right)\ge\left(0-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=1\)
\(\Rightarrow MinS=1\Leftrightarrow m=0\left(tm\right)\)
\(b,1< x1< x2\Leftrightarrow0< x1-1< x2-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-1\right)\left(x2-1\right)>0\\x1+x2-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\\\left\{{}\begin{matrix}x1 < 1\\x2< 1\end{matrix}\right.\end{matrix}\right.\\2m+2-2>0\\\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}x1x2>1\\x1x2< 1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>0\\m< 0\end{matrix}\right.\\m>0\\\end{matrix}\right.\Rightarrow m>3\)
Cho hpt \(\left\{{}\begin{matrix}2x+y=8\\4x+my=2m+18\end{matrix}\right.\)
Với (x,y) là nghiệm duy nhất. Tìm m để:
a) \(A=x^2+y^2\) đạt GTNN
b) \(B=xy\) đạt GTLN
a: áp dụng bđt bunhiacopxki: (2x+y)2 ≤(22+12)(x2+y2)
⇔x2+y2 nn=64/5
dấu bằng xảy ra khi x=2y=8/5
thay vào pt(2) tìm m....
b: áp dụng bđt cauchy: 2x+y≥2√2xy
⇔xy ln=8 khi x=\(\dfrac{y}{2}\)=2
thay vào tìm m ở pt(2)
GIÚP EM VỚI Ạ,EM CẦN GẤPP
Cho phương trình : x^2 - 2(m-1)x+m^2-3m=0.Tìm m để phương trình có 2 nghiệm thỏa mãn :
a)(x1^2+x2^2) đạt GTNN
b) (2x1-3)(2x2-3) > 1
Tìm GTNN
B=ǀx - 2ǀ+ǀx -4ǀ
Ta có tính chất `|P|>=P,|P|>=-P`
`=>{(|x-2|>=x-2),(|x-4|>=4-x):}`
`=>B>=x-2+4-x=2`
Dấu "=" xảy ra khi `{(x-2>=0),(x-4<=0):}`
`<=>{(x>=2),(x<=4):}`
`<=>2<=x<=4`
Tìm GTNN
B= 15/(4x-4x^2-5)
Ta có : \(-4x^2+4x-5=-\left(4x^2-4x+5\right)=-\left(2x-1\right)^2-4\le-4\)
\(\Rightarrow B\ge\dfrac{15}{-4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN B là -15/4 khi x = 1/2
Tìm GTNN
B= (4x^2 - 6x +1)/(4x^2-4x+1)
Đề bài ko chính xác
Biểu thức này chỉ có GTLN, không có GTNN
cho a,b>0 thỏa a+b=3 tìm GTNN
B=\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2$
$\Leftrightarrow B.3\geq 4$
$\Leftrightarrow B\geq \frac{4}{3}$
Vậy $B_{\min}=\frac{4}{3}$
Giá trị này đạt tại $a=b=\frac{3}{2}$
Bài 1: Tìm x
a. (-20) + x = -30 b. (-10) - x = -20
c. -10 + (-2) = -4 d. x + (-3) = -7
e. x - (-5) = -9 f. x (-11) = 12
h. 2x - 10 = 20 l. 4x - 8 = -8
k. -12 - (-2)x = -8
Bài 2: Tìm x
a. -20 - (10-x) = -3
b. 14 + (14-x) = -2
c. -15 - (x-3) = -7
d. (x+4) + (-20) = -8
e. -2x - 2 = -4
f. -2x + 4 = -4
l. -12 - (-2)x = -2 -4
Thank mn ạaa!!
Bài 1:
a. $(-20)+x=-30$
$x-20=-30$
$x=-30+20=-(30-20)=-10$
b.
$(-10)-x=-20$
$x=(-10)-(-20)=-10+20=20-10=10$
c. Đề sai. Bạn xem lại.
d.
$x+(-3)=-7$
$x=-7-(-3)=-7+3=-(7-3)=-4$
e.
$x-(-5)=-9$
$x=(-9)+(-5)=-14$
f.
$x(-11)=12$
$x=\frac{12}{-11}=\frac{-12}{11}$
h.
$2x-10=20$
$2x=20+10=30$
$x=30:2=15$
l.
$4x-8=-8$
$4x=-8+8=0$
$x=0:4=0$
k.
$-12-(-2)x=-8$
$(-2)x=-12-(-8)=-12+8=-(12-8)=-4$
$x=(-4):(-2)=2$
Bài 2:
a. $-20-(10-x)=-3$
$10-x=-20-(-3)=-20+3=-(20-3)=-17$
$x=10-(-17)=10+17=27$
b.
$14+(14-x)=-2$
$14-x=-2-14=-16$
$x=14-(-16)=14+16=30$
c.
$-15-(x-3)=-7$
$x-3=-15-(-7)=-15+7=-8$
x=-8+3=-5$
d.
$(x+4)+(-20)=-8$
$x+4=-8-(-20)=-8+20=12$
$x=12-4=8$
e.
$-2x-2=-4$
$-2x=-4+2=-2$
$x=(-2):(-2)=1$
f.
$-2x+4=-4$
$-2x=-4-4=-8$
$x=(-8):(-2)=4$
l.
$-12-(-2)x=-2-4=-6$
$(-2)x=-12-(-6)=-12+6=-6$
$x=(-6):(-2)=3$