Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2$
$\Leftrightarrow B.3\geq 4$
$\Leftrightarrow B\geq \frac{4}{3}$
Vậy $B_{\min}=\frac{4}{3}$
Giá trị này đạt tại $a=b=\frac{3}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2$
$\Leftrightarrow B.3\geq 4$
$\Leftrightarrow B\geq \frac{4}{3}$
Vậy $B_{\min}=\frac{4}{3}$
Giá trị này đạt tại $a=b=\frac{3}{2}$
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
Cho a,b,c>0 thỏa mãn a+b+c=\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\). Chứng minh rằng:
\(\dfrac{1}{a^3+b+c}+\dfrac{1}{a+b^3+c}+\dfrac{1}{a+b+c^3}\le1\)
Cho a và b là các số khác 0 thỏa mãn: \(ab\left(a+b\right)=a^2+b^2-ab\)
Tìm Max của: \(A=\dfrac{1}{a^3}+\dfrac{1}{b^3}\)
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
Cho a,b>0 thỏa mãn a+b=1.Tìm GTNN của A=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
MN giúp e với e cần gấp ạ
Cho \(a,b>0\) thỏa mãn \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{ab}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\).Tìm GTNN của
P=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)
MN giúp e với ạ
cho a,b,c>0 thỏa mãn abc=1.CMR\(\dfrac{a^3}{1+b}+\dfrac{b^3}{1+c}+\dfrac{c^3}{1+a}\ge\dfrac{3}{2}\)
xét a,b>0 thỏa mãn a+b=1.Tìm GTNN của P=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)