Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dinh huong

Cho a,b>0 thỏa mãn a+b=1.Tìm GTNN của A=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)

MN giúp e với e cần gấp ạ

 

Nguyễn Việt Lâm
10 tháng 8 2021 lúc 22:15

\(A=a^3b^3+\dfrac{1}{a^3b^3}+2=a^3b^3+\dfrac{1}{2^{12}.a^3b^3}+\dfrac{2^{12}-1}{2^{12}a^3b^3}+2\)

\(A\ge2\sqrt{\dfrac{a^3b^3}{2^{12}.a^3b^3}}+\dfrac{2^{12}-1}{2^{12}.\left(\dfrac{a+b}{2}\right)^6}+2=\dfrac{2}{2^6}+\dfrac{2^{12}-1}{2^6}+2=\dfrac{2^{12}+1}{2^6}+2\) (casio)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)


Các câu hỏi tương tự
Hoang Tran
Xem chi tiết
Hoang Tran
Xem chi tiết
Hoang Tran
Xem chi tiết
Hoang Tran
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
pro
Xem chi tiết
Xem chi tiết
dinh huong
Xem chi tiết
Hiếu Minh
Xem chi tiết