\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh bất đẳng thức trên
Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ac+b^2}+\dfrac{c+a}{ab+c^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Xét hiệu VT - VP
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)
Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0
\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)
=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)
mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm
Ta viết bất đẳng thức đã cho lại thành
\(\sum\left[\dfrac{1}{c}-\dfrac{\left(a+b+2c\right)}{2\left(ab+c^2\right)}\right]\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{2\prod\left(ab+c^2\right)}\)
\(\Leftrightarrow\sum\dfrac{c\left(a^2+ab+b^2\right)\left(a-b\right)^2}{ab\left(a^2+bc\right)\left(b^2+ca\right)}\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\)
Hay \(S_a\left(b-c\right)^2+S_b\left(c-a\right)^2+S_c\left(a-b\right)^2\ge\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}\quad\left(1\right)\)
Vậy $VT\geq 0$ và $S_a+S_b\ge 0;S_b+S_c\ge 0.$ Nếu \(a\ge b\ge c\rightarrow VT\ge0\ge VP,\) ta chỉ xét \(a\le b\le c.\)
\(\left(1\right)\Leftrightarrow\left(S_a+S_b\right)\left(b-c\right)^2+\left(S_b+S_c\right)\left(a-b\right)^2\ge\left[\dfrac{\left(c-a\right)\left(a^2+b^2+c^2\right)}{\prod\left(ab+c^2\right)}-2S_b\right]\left(a-b\right)\left(b-c\right)\)
Đặt \(c=a+x+y,b=a+x\Rightarrow x=b-a;y=c-b\left(x,y\ge0\right)\) thay vào rút gọn các thứ là đpcm.
P/s: Cách này khá trâu nhưng chịu thôi, bài này mình nghĩ khá chặt.
chứng minh bất đẳng thức sau
\(\dfrac{a}{bc}\)+\(\dfrac{b}{ca}\)+\(\dfrac{c}{ab}\)≥\(\dfrac{2}{a}\)+\(\dfrac{2}{b}\)+\(\dfrac{2}{c}\)( với a,b,c là các số dương)
Cho 3 số thực dương a, b, c thỏa mãn điều kiện a+b+c=3. Chứng minh bất đẳng thức sau \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca} \geq \dfrac{3}{2}\)
nhờ mọi người giúp:
cho a;b;c dương, chứng minh
\(\dfrac{b+c}{a^2+bc}+\dfrac{c+a}{b^2+ca}+\dfrac{a+b}{c^2+ab}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{b+c}{a^2+bc}=\frac{(b+c)^2}{(b+c)(a^2+bc)}=\frac{(b+c)^2}{b(a^2+c^2)+c(a^2+b^2)}\leq \frac{c^2}{b(a^2+c^2)}+\frac{b^2}{c(a^2+b^2)}\)
Tương tự với các phân thức còn lại:
$\frac{c+a}{b^2+ca}\leq \frac{c^2}{b(a^2+c^2)}+\frac{a^2}{c(a^2+b^2)}$
$\frac{a+b}{c^2+ab}\leq \frac{a^2}{b(a^2+c^2)}+\frac{b^2}{c(a^2+b^2)}$
Cộng theo vế và thu gọn suy ra:
$\text{VT}\leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ (đpcm)
\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau
-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.
Cho a,b,c>0 Chứng minh rằng:
\(\dfrac{b+c}{a^2+bc}+\dfrac{c+a}{b^2+ca}+\dfrac{a+b}{c^2+ab}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Đặt \(T=\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)
\(BDT\Leftrightarrow\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2+bc}{b+c}-a+\dfrac{b^2+ca}{c+a}-b+\dfrac{c^2+ab}{a+b}-c\ge0\)
\(\Leftrightarrow\dfrac{a^2+bc-ab-ac}{b+c}+\dfrac{b^2+ac-ab-bc}{a+c}+\dfrac{c^2+ab-ac-bc}{a+b}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)}{b+c}+\dfrac{\left(b-a\right)\left(b-c\right)}{a+c}+\dfrac{\left(c-a\right)\left(c-b\right)}{a+b}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{T}\ge0\)
\(\Leftrightarrow\dfrac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{T}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2T}\ge0\)
Xảy ra khi \(a=b=c\)
\(BĐT\Leftrightarrow\sum\left(\dfrac{1}{a}-\dfrac{b+c}{a^2+bc}\right)\ge0\)
\(\Leftrightarrow\sum\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\)
Giả sử \(a\ge b\ge c\)thì
\(\dfrac{\left(a-b\right)\left(a-c\right)}{a\left(a^2+bc\right)}\ge0\).vậy nên chỉ cần chứng minh
\(\dfrac{\left(b-c\right)\left(b-a\right)}{b\left(b^2+ac\right)}+\dfrac{\left(c-a\right)\left(c-b\right)}{c\left(c^2+ab\right)}\ge0\)
\(\Leftrightarrow\left(b-c\right)\left[\dfrac{b-a}{b\left(b^2+ac\right)}+\dfrac{a-c}{c\left(c^2+ab\right)}\right]\ge0\)
\(\Leftrightarrow\left(b-c\right)\left[\left(b-a\right)\left(c^3+abc\right)+\left(a-c\right)\left(b^3+abc\right)\right]\ge0\)
\(\Leftrightarrow\left(b-c\right)^2\left(b+c\right)\left(ab+ac-bc\right)\ge0\)( đúng vì \(a\ge b\ge c\))
Vậy BĐT được chứng minh.
Dấu = xảy ra khi a=b=c
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được
Chứng minh bất đẳng thức : \(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{c+a}{c^2+a^2}\)\(\forall a,b,c>0;a+b+c=ab+ac+ca\)
Đề bài thiếu, yêu cầu chứng minh gì nhỉ bạn?
SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI
Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{a^2+b^2+c^2}\)
MN giúp e với
\(P=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\) (BĐT Cauchy Schwarz)
\(=\dfrac{9}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{7}{ab+bc+ca}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}+\dfrac{7}{ab+bc+ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
Ta có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\) .Thế vào biểu thức
\(\Rightarrow P\ge9+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
\(\Rightarrow P_{min}=30\) khi \(a=b=c=\dfrac{1}{3}\)