A=\(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a)rút gọn
b)tìm a để A<0
c)tìm a để A=-2
rút gọn biểu thức a
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a/ rút gọn A
b/ tìm giá trị để A dương
a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)
B=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)
a) Rút gọn
b) Tìm B khi a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{B}>B\)
a) ĐKXĐ: \(a>1;a\ne-1\)
\(B=\left(\dfrac{3}{\sqrt{1+a}}+\dfrac{\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right):\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)
\(\Leftrightarrow B=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1+a}.\sqrt{1-a}}{3+\sqrt{1+a}.\sqrt{1-a}}\)
\(\Leftrightarrow B=\sqrt{1-a}\)
b) Thay a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\) vào B ta được:
\(B=\sqrt{1-\dfrac{\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2+\sqrt{3}-\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\)\(=\sqrt{\dfrac{4}{4+2\sqrt{3}}}\) \(\Leftrightarrow B\) \(=\dfrac{\sqrt{4}}{\sqrt{3+2\sqrt{3}+1}}\)
\(\Leftrightarrow B=\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\) \(\Leftrightarrow B=\dfrac{2}{\sqrt{3}+1}=\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}=\sqrt{3}-1\)
c) Có \(\sqrt{B}>B\) \(\Leftrightarrow\sqrt{\sqrt{1-a}}>\sqrt{1-a}\)
\(\Leftrightarrow\sqrt{1-a}>1-a\)
\(\Leftrightarrow\sqrt{1-a}-\left(1-a\right)>0\)
\(\Leftrightarrow\sqrt{1-a}.\left(1-\sqrt{1-a}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{1-a}>0\\1-\sqrt{1-a}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{1-a}< 0\\1-\sqrt{1-a}< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 1\\a>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>1\\a< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< a< 1\\a>1;a< 0\end{matrix}\right.\)
1. cho biểu thức
M=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a, rút gọn M
b, Tìm giá trị của a để M>-\(\dfrac{1}{2}\)
Lời giải:
ĐK: $x>0; a\neq 1; a\neq 4$
a)
$M=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+2)}{(\sqrt{a}-2)(\sqrt{a}-1)}$
$=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}$
b)
$M>\frac{-1}{2}\Leftrightarrow \frac{\sqrt{a}-2}{3\sqrt{a}}+\frac{1}{2}>0$
$\Leftrightarrow \frac{5\sqrt{a}-4}{6\sqrt{a}}>0$
$\Leftrightarrow 5\sqrt{a}-4>0$
$\Leftrightarrow a>\frac{16}{25}$
Kết hợp với ĐKXĐ thì $a>\frac{16}{25}; a\neq 1; a\neq 4$
Bài 1: Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
a) Rút gọn A
b) Tìm x để \(\left|A\right|>A\)
Bài 2: Cho B = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
a) Rút gọn B
b) Tìm tất cả các giá trị của x sao cho B<0
1) rút gọn và tìm A để A nguyên
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
giúp mk vs ạ mk cần gấp
\(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(đk:a>0,a\ne1\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+2}=\dfrac{1}{\sqrt{a}}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}}\)
Để A nguyên
\(\Leftrightarrow A=\dfrac{\sqrt{a}-2}{\sqrt{a}}=1-\dfrac{2}{\sqrt{a}}\in Z\)
Do \(\sqrt{a}>0,\sqrt{a}\ne1\)
\(\Leftrightarrow\sqrt{a}\inƯ\left(2\right)=\left\{2\right\}\)
\(\Leftrightarrow a=4\)
C=(\(B=\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\) a Tìm đkxd của B
b rút gọn B
c tìm a sao cho B \(\le\)\(\dfrac{1}{3}\)
Cho biểu thức :B = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ của B
b) Rút gọn B
c) Tìm a sao cho B ≤ \(\dfrac{1}{3}\)
a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)
b) Với \(a>0;a\ne1;a\ne4\), ta có:
\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).
Cho biểu thức : B =\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ của B
b) Rút gọn B
c) tìm a sao cho B ≤ \(\dfrac{1}{3}\)
a, ĐKXĐ:
\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)
b,
\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)
Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)
B=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) DKXD
b)rút gọn
\(B=\left(\dfrac{1}{\sqrt[]{a}-1}-\dfrac{1}{\sqrt[]{a}}\right):\left(\dfrac{\sqrt[]{a}+1}{\sqrt[]{a}-2}-\dfrac{\sqrt[]{a}+2}{\sqrt[]{a}-1}\right)\left(1\right)\)
a) B xác định khi và chỉ khi :
\(\left\{{}\begin{matrix}a\ge0\\\sqrt[]{a}\ne0\\\sqrt[]{a}-1\ne0\\\sqrt[]{a}-2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)
b) \(\left(1\right)\Leftrightarrow B=\left(\dfrac{\sqrt[]{a}-\left(\sqrt[]{a}-1\right)}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{\left(\sqrt[]{a}+1\right)\left(\sqrt[]{a}-1\right)-\left(\sqrt[]{a}+2\right)\left(\sqrt[]{a}-2\right)}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)
\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{a-1-\left(a-4\right)}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)
\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right):\left(\dfrac{3}{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}\right)\)
\(\Leftrightarrow B=\left(\dfrac{1}{\sqrt[]{a}\left(\sqrt[]{a}-1\right)}\right).\left(\dfrac{\left(\sqrt[]{a}-1\right)\left(\sqrt[]{a}-2\right)}{3}\right)\)
\(\Leftrightarrow B=\dfrac{\sqrt[]{a}-2}{3\sqrt[]{a}}\)
Cho biểu thức: M= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\).
a) Tìm ĐKXĐ của M.
b) Rút gọn M.
c) Tìm giá trị của a để M=-4.
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
b) Ta có: \(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)
\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}\)
\(=\dfrac{-4\sqrt{a}}{2}=-2\sqrt{a}\)
c) Để M=-4 thì \(-2\sqrt{a}=-4\)
\(\Leftrightarrow\sqrt{a}=2\)
hay a=4(thỏa ĐK)