Tìm max P=\(2019\left(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\right)-2021\left(\dfrac{b^n+c^n}{a^n}+\dfrac{c^n+a^n}{b^n}+\dfrac{a^n+b^n}{c^n}\right)\)
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:
1, \(\dfrac{1}{\left(a+b-c\right)^n}+\dfrac{1}{\left(a-b+c\right)^n}+\dfrac{1}{\left(b+c-a\right)^n}\ge\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\)
2, \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}\ge4^n\left[\dfrac{1}{\left(2a+b+c\right)^n}+\dfrac{1}{\left(a+2b+c\right)^n}+\dfrac{1}{\left(a+b+2c\right)^n}\right]\)
Cho 3 số thực a,b,c thõa : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
C/m : \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0.\)
Cm bài toán tổng quát :
giả sử a,b,c là các số thực thõa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}.\)
C/M : \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\forall n\in N.\)
Bài toán tổng quát: Đề này n lẻ mới đúng nhé
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{ab\left(ac+bc+c^2\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Nếu \(a=-b\Rightarrow a^n=-b^n\) và \(\dfrac{1}{a^n}=\dfrac{-1}{b^n}\)
Ta có: \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{c^n}\)
\(\dfrac{1}{a^n+b^n+c^n}=\dfrac{1}{c^n}\)
VT = VP => ĐPCM
Còn ý còn lại thì dựa trên bài này mà biến đổi một tí là ra
1/Cmr các tổng sau không là số nguyên:
a) \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{n}\) (n thuộc N , n lớn hơn hoặc bằng 2)
b) \(B=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{2n+1}\) (n thuộc N , n lớn hơn hoặc bằng 1)
2.Tính giá trị của biểu thức sau, biết rằng a+b+c=0 :
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
3.Cmr nếu \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\) và các số a,b,c,a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Bài 1: CMR:
\(a,\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(b,\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\) với a+b+c=3
Bài 2: \(a,b,c\in N,a+b+c=2021\)
Tìm GTNN \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Bài 1:
a) Áp dụng bđt Cô - si:
\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)
Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
=> đpcm
Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt
Bài 2:
\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)
\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)
Áp dụng BĐT Svacxo, ta có
\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)
Dấu"=" ⇔ ...
Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v
Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)
\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)
Dấu `"="` xảy ra:
\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)
\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)
Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)chứng tỏ:
a)\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) b)\(\dfrac{a^n-b^n}{c^n-d^n}=\dfrac{\left(a-b\right)^n}{\left(c-d\right)^n}\) c)\(\dfrac{a}{3\text{a}+b}=\dfrac{c}{3c+d}\)
A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)
Cho a,b,c là các số thực; a,b,c # 0 thỏa mãn :
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}-\dfrac{a^3+b^3+c^3}{abc}=2\)
Tính giá trị biểu thức:
A=\(\left[\left(a+b\right)^{2019}-c^{2019}\right]\left[\left(b+c\right)^{2019}-a^{2019}\right]\left[\left(a+c\right)^{2019}-b^{2019}\right]\)
Tìm lim (\(\dfrac{2021}{n^2}-\left(\dfrac{3}{7}\right)^n+2022\))
A. 2022 B.0 c.\(\infty\) d.-\(\infty\)
\(n\ge3;a,b,c>0\)
CMR :
\(\dfrac{1}{a^n\left(b+c\right)}+\dfrac{1}{b^n\left(c+a\right)}+\dfrac{1}{c^n\left(a+b\right)}\ge\dfrac{3}{2}\)
Áp dụng BĐT holder cho n bộ 3 số:
\(\left(\sum\dfrac{b^nc^n}{b+c}\right)\left[\sum\left(b+c\right)\right]\left(1+1+1\right)..\left(1+1+1\right)\ge\left(ab+bc+ca\right)^n\)
\(\Leftrightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^n}{3^{n-2}.2.\left(a+b+c\right)}\ge\dfrac{3^{n-2}.3abc\left(a+b+c\right)}{3^{n-2}.2.\left(a+b+c\right)}=\dfrac{3}{2}\)
#Hint:(\(\left\{{}\begin{matrix}ab+bc+ca\ge3\\\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\end{matrix}\right.\))
BĐT holder thường dùng:
\(\left(a_1^m+a_2^m+...+a_k^m\right)\left(b_1^m+b_2^m+...+b_k^m\right)...\left(c_1^m+...+c_k^m\right)\ge\left(a_1b_1...c_1+a_2.b_2...c_2+...+a_k.b_k...c_k\right)^m\)
trong đó VT có m thừa số từ a đến c
a) Với \(n\in N\). Chứng minh:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
b) Cho a,b,c > 0. Chứng minh:
+) Nếu \(a+b+c=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì a = b = c.
+) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\).
a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)
\(\Leftrightarrow2n+1=1\left(2n+1\right)\)
\(\Leftrightarrow2n+1=2n+1\)
\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Câu b) ý 2:
Áp dụng BĐT cô si ta có :
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)
Câu a:
VT=n+1+n=2n+1 (1)
\(VP=n^2+2n+1-n^2=2n+1\) (2)
Từ (1) và (2) => VT=VP =>đpcm