Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
5 tháng 12 2018 lúc 13:20
Võ Thị Kim Dung
Xem chi tiết
Hà Nam Phan Đình
5 tháng 1 2018 lúc 17:27

Bài toán tổng quát: Đề này n lẻ mới đúng nhé

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{ab\left(ac+bc+c^2\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Nếu \(a=-b\Rightarrow a^n=-b^n\)\(\dfrac{1}{a^n}=\dfrac{-1}{b^n}\)

Ta có: \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{c^n}\)

\(\dfrac{1}{a^n+b^n+c^n}=\dfrac{1}{c^n}\)

VT = VP => ĐPCM

Còn ý còn lại thì dựa trên bài này mà biến đổi một tí là ra

Linh Lê
Xem chi tiết
ILoveMath
Xem chi tiết
Eren
19 tháng 1 2022 lúc 22:43

Bài 1: 

a) Áp dụng bđt Cô - si:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)

Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

=> đpcm

Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt

Minh Hiếu
19 tháng 1 2022 lúc 22:54

Bài 2:

\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)

\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)

Áp dụng BĐT Svacxo, ta có

\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu"=" ⇔ ...

Lê Phương Mai
19 tháng 1 2022 lúc 23:06

Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v

Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)

\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu `"="` xảy ra:

\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)

\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)

giai cu
Xem chi tiết
kuroba kaito
25 tháng 11 2017 lúc 22:33

A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)

Nguyễn Hoài Nam
Xem chi tiết
Jonit Black
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 20:21

Chọn B

Trần Ngọc Diệp
21 tháng 5 2022 lúc 16:54

B

NBH Productions
Xem chi tiết
HiệU NguyễN
23 tháng 11 2018 lúc 0:57

Áp dụng BĐT holder cho n bộ 3 số:

\(\left(\sum\dfrac{b^nc^n}{b+c}\right)\left[\sum\left(b+c\right)\right]\left(1+1+1\right)..\left(1+1+1\right)\ge\left(ab+bc+ca\right)^n\)

\(\Leftrightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^n}{3^{n-2}.2.\left(a+b+c\right)}\ge\dfrac{3^{n-2}.3abc\left(a+b+c\right)}{3^{n-2}.2.\left(a+b+c\right)}=\dfrac{3}{2}\)

#Hint:(\(\left\{{}\begin{matrix}ab+bc+ca\ge3\\\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\end{matrix}\right.\))

BĐT holder thường dùng:

\(\left(a_1^m+a_2^m+...+a_k^m\right)\left(b_1^m+b_2^m+...+b_k^m\right)...\left(c_1^m+...+c_k^m\right)\ge\left(a_1b_1...c_1+a_2.b_2...c_2+...+a_k.b_k...c_k\right)^m\)

trong đó VT có m thừa số từ a đến c

NBH Productions
20 tháng 11 2018 lúc 20:51

abc = 1 nưa nha

Thư Nguyễn Ngọc Anh
Xem chi tiết
Duy Đỗ Ngọc Tuấn
17 tháng 6 2018 lúc 16:24

a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)

\(\Leftrightarrow2n+1=1\left(2n+1\right)\)

\(\Leftrightarrow2n+1=2n+1\)

\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

Ngân Lê
17 tháng 6 2018 lúc 16:31

Câu b) ý 2:

Áp dụng BĐT cô si ta có :

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)

Ngân Lê
17 tháng 6 2018 lúc 16:35

Câu a:

VT=n+1+n=2n+1 (1)

\(VP=n^2+2n+1-n^2=2n+1\) (2)

Từ (1) và (2) => VT=VP =>đpcm