Cho x, y là các số thực dương thỏa mãn x+y=1. Tìm GTNN của biểu thức:
P(x; y)=\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2\text{x}y}\)
Cho x, y là các số thực dương thỏa mãn x+y=1. Tìm GTNN của biểu thức:
P(x; y)=\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2\text{x}y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{2}{\left(x+y\right)^2}=2\left(x+y=1\right)\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)
Tìm GTLN ( hoặc GTNN ) của biểu thức sau :
\(D=\dfrac{x^2}{x-2}.\left(\dfrac{x^2+4}{x}-4\right)+3\)
\(D=\dfrac{x^2}{x-2}\left(\dfrac{x^2+4-4x}{x}\right)+3\)
\(D=\dfrac{x^2}{x-2}\dfrac{\left(x-2\right)^2}{x}+3\)
\(D=x\left(x-2\right)+3\)
\(D=x^2-2x+1+2\)
\(D=\left(x-1\right)^2+2\ge2\)
Dấu"=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MinD là 2 \(\Leftrightarrow x=1\)
Quy đồng mẫu các phân thức sau :
1.\(\dfrac{x}{x^2-2ax+a^2},\dfrac{x+a}{x^2-ax}\)
2.\(\dfrac{x}{x^3-1},\dfrac{x+1}{x^2-x},\dfrac{x-1}{x^2+x+1}\)
3.\(\dfrac{a-x}{6x^2-ax-2a^2},\dfrac{a+x}{3x^2+4ax-4a^2}\)
1,
\(x^2-2ax+a^2=\left(x-a\right)^2\)
\(x^2-ax=x\left(x-a\right)\)
Vậy MSC: \(\left(x-a\right)^2x\)
2,
\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
\(x^2-x=x\left(x-1\right)\)
\(x^2+x+1\)
vậy MSC là: \(x\left(x-1\right)\left(x^2+x+1\right)\)
Quy đồng mẫu các phân thức sau:
a) 1 phần x+2 và 8 phần 2x-x2
b) x2+1 và x2 phần x2-1
a)
\(\dfrac{1}{x+2}=\dfrac{1}{2+x}\)
\(\dfrac{8}{2x-x^2}=\dfrac{-8}{-x\left(2+x\right)}=\dfrac{8}{x\left(2+x\right)}\)
MTC: \(x\left(2+x\right)\)
\(\dfrac{1}{x+2}=\dfrac{1}{2+x}=\dfrac{x}{x\left(2+x\right)}\)
\(\dfrac{8}{2x-x^2}=\dfrac{-8}{-x\left(2+x\right)}=\dfrac{8}{x\left(2+x\right)}\)
b)
\(x^2+1=\dfrac{x^2+1}{1}\)
\(\dfrac{x^2}{x^2-1}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
MTC: \(\left(x-1\right)\left(x+1\right)\)
\(x^2+1=\dfrac{x^2+1}{1}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{x^2}{x^2-1}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{2y+x}{2y^{2^{ }}-xy}\)+\(\dfrac{8x}{x^{2^{ }}-4y^2}\)+\(\dfrac{2y-x}{2y^{2^{ }}+xy}\)
\(=\dfrac{2y+x}{y\left(2y-x\right)}+\dfrac{8x}{\left(x-2y\right)\left(x+2y\right)}+\dfrac{2y-x}{y\left(2y+x\right)}\)
\(=\dfrac{2y+x}{y\left(2y-x\right)}-\dfrac{8x}{\left(2y-x\right)\left(x+2y\right)}+\dfrac{2y-x}{y\left(2y+x\right)}\)
\(=\dfrac{\left(2y+x\right)^2}{y\left(2y-x\right)\left(2y+x\right)}-\dfrac{8xy}{y\left(2y-x\right)\left(x+2y\right)}+\dfrac{\left(2y-x\right)^2}{y\left(2y+x\right)\left(2y-x\right)}\)
\(=\dfrac{\left(2y+x\right)^2-8xy+\left(2y-x\right)^2}{y\left(2y-x\right)\left(2y+x\right)}\)
\(=\dfrac{8y^2-8xy+2x^2}{\left(y\right)\left(2y-x\right)\left(2y+x\right)}\)
Phân tích trên tử ta có:
\(=2\left(\left(2y\right)^2+4xy+x^2\right)=2\left(2y+x\right)^2\)
\(=\dfrac{2\left(2y+x\right)^2}{y\left(2y+x\right)\left(2y-x\right)}=\dfrac{2\left(2y+x\right)}{y\left(2y-x\right)}\)
CHÚC BẠN HỌC TỐT......
bài 1 : rút gọn các phân thức sau
a, \(\dfrac{x^2-2x}{x^2-4}\)
b, \(\dfrac{x^2+5x+4}{x^2-1}\)
c,\(\dfrac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)
bài 2 : rút gọn các biểu thức sau.
a,\(\left(\right)\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\left(\right):\dfrac{4x}{10x-5}\)
b, \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
c, \(\left(\dfrac{5x+2}{x^2-10x}\dfrac{5x-2}{x^2+10x}\right)\times\dfrac{x^2-100}{x^2+4}\)
\(a,\dfrac{x^2-2x}{x^2-4}=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
b) \(\dfrac{x^2+5x+4}{x^2-1}=\dfrac{x^2+x+4x+4}{x^2-1}=\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+4}{x-1}\)
c) \(\dfrac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)
\(=\dfrac{x^4+4x^2-4x^2+4}{x^3+2x-2x^2-x^2+2x-1-1}\)
\(=\dfrac{\left(x^2+2\right)^2-4x^2}{\left(x^3+2x-2x^2\right)-\left(x^2-2x+2\right)}\)
\(=\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x\left(x^2+2-2x\right)-\left(x^2+2-2x\right)}\)
\(=\dfrac{x^2+2+2x}{x-1}\)
Bài 2:
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{10}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{1-2x+x^2}{x\left(x+1\right)}:\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{1}{x+1}\)
c) Trong ngoặc giữa hai phân số là dấu gì vậy ?
Bài 1: quy đồng mẫu thức
a, 2+1/2x^2-2 và 1/x-1
b, 3x+2/x^2-2 và x+1/2x+1
c, 3/x-1 và 4/x-2
a: Sửa đề: \(\dfrac{2x+1}{2x^2-2}\)
\(\dfrac{2x+1}{2x^2-2}=\dfrac{2x+1}{2\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{1}{x-1}=\dfrac{2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2x+2}{2\left(x-1\right)\left(x+1\right)}\)
b: \(\dfrac{3x+2}{x^2-2}=\dfrac{\left(3x+2\right)\left(2x+1\right)}{\left(x^2-2\right)\left(2x+1\right)}=\dfrac{6x^2+7x+2}{\left(x^2-2\right)\left(2x+1\right)}\)
\(\dfrac{x+1}{2x+1}=\dfrac{\left(x+1\right)\left(x^2-2\right)}{\left(2x+1\right)\left(x^2-2\right)}=\dfrac{x^3-2x+x^2-2}{\left(2x+1\right)\left(x^2-2\right)}\)
c: \(\dfrac{3}{x-1}=\dfrac{3x-6}{\left(x-1\right)\left(x-2\right)}\)
\(\dfrac{4}{x-2}=\dfrac{4x-4}{\left(x-2\right)\left(x-1\right)}\)
đơn thức \(A=\dfrac{1}{2}x^{2n}y^3\) chia hết cho đơn thức \(B=-3x^{n+2}y^{n+1}\) khi đó giá trị của số tự nhiên n là
\(\dfrac{A}{B}=\dfrac{x^{2n}y^3}{2.\left(-3\right)x^{n+2}y^{n+1}}=\dfrac{-1}{6}x^{2n-n-2}y^{3-n-1}=\dfrac{-1}{6}x^{n-2}y^{2-n}\Rightarrow\left\{{}\begin{matrix}n-2\ge0\\2-n\ge0\end{matrix}\right.\Rightarrow n=2}\)
\(4x^2-4x-1>0\)
\(4x^2-4x-1>0\Leftrightarrow4x^2-4x+1-2>0\Leftrightarrow\left(2x-1\right)^2-2>0\)
\(\Leftrightarrow\left(2x-1\right)^2>2\Leftrightarrow\left\{{}\begin{matrix}2x-1>\sqrt{2}\\hoặc\\2x-1< -\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x>1+\sqrt{2}\\hoặc\\2x< 1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1+\sqrt{2}}{2}\\hoặc\\a< \dfrac{1-\sqrt{2}}{2}\end{matrix}\right.\) vậy \(x>\dfrac{1+\sqrt{2}}{2}\) hoặc \(x< \dfrac{1-\sqrt{2}}{2}\)
Quy đồng
\(\dfrac{x^2+xy}{\left(x+y\right)^2};\dfrac{y^2-xy}{\left(x-y\right)^2};\dfrac{2xy}{x^2-y^2}\)
\(\dfrac{x^2+xy}{\left(x+y\right)^2}=\dfrac{x\left(x+y\right)}{\left(x+y\right)^2}=\dfrac{x}{x+y}=\dfrac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\)
\(\dfrac{y^2-xy}{\left(x-y\right)^2}=\dfrac{-y\left(x-y\right)}{\left(x-y\right)^2}=\dfrac{-y}{x-y}=\dfrac{-y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)
\(\dfrac{2xy}{x^2-y^2}=\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\)