Bài 4: Quy đồng mẫu thức nhiều phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo Ngọc cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 5 2022 lúc 13:37

\(\dfrac{5x^2}{x^2+5x+6}=\dfrac{5x^2}{\left(x+2\right)\left(x+3\right)}=\dfrac{5x^2\left(x+5\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

\(\dfrac{2x+3}{x^2+7x+10}=\dfrac{2x+3}{\left(x+2\right)\left(x+5\right)}=\dfrac{\left(2x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

\(-5=\dfrac{-5\left(x+2\right)\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

Bảo Ngọc cute
Xem chi tiết
Mysterious Person
4 tháng 9 2017 lúc 8:09

qui đồng cái nào hả bn ?? ?

ngonhuminh
4 tháng 9 2017 lúc 8:11

MSC:

\(\dfrac{5x^2}{\left(x+2\right)\left(x+3\right)};\dfrac{\left(2x+3\right)}{\left(x+2\right)\left(x+5\right)};-5\)

\(\dfrac{5x^2\left(x+5\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)};\dfrac{\left(2x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)};\dfrac{-5\left(x+2\right)\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+3\right)\left(x+5\right)}\)

Bảo Ngọc cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 5 2022 lúc 15:00

undefined

 

Xuân Lê
Xem chi tiết
Xuân Lê
3 tháng 10 2017 lúc 17:33

trả lời hộ mk nha mấy bạn mk đag cần gấp

nguyen thi thu hien
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
Phùng Khánh Linh
8 tháng 11 2017 lúc 17:44

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

Phùng Khánh Linh
8 tháng 11 2017 lúc 17:55

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Phùng Khánh Linh
8 tháng 11 2017 lúc 18:00

e) MTC = ( x - y)(y - z)( x - z)

Do đó : \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{xz}{\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{xy}{\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

DoriKiều
Xem chi tiết
Akai Haruma
3 tháng 11 2017 lúc 23:08

Lời giải:

\(\text{VT}=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-c)(b-a)}+\frac{1}{c(c-a)(c-b)}\)

\(=\frac{bc(c-b)}{abc(a-b)(b-c)(c-a)}+\frac{ac(a-c)}{abc(a-b)(b-c)(c-a)}+\frac{ab(b-a)}{abc(a-b)(b-c)(c-a)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{abc(a-b)(b-c)(c-a)}\) (1)

Xét \(bc(c-b)+ac(a-c)+ab(b-a)=bc(c-b)-ac[(c-b)+(b-a)]+ab(b-a)\)

\(=(c-b)(bc-ac)+(b-a)(ab-ac)=c(c-b)(b-a)+a(b-a)(b-c)\)

\(=(c-b)(b-a)(c-a)=(a-b)(b-c)(c-a)\) (2)

Từ \((1),(2)\Rightarrow \text{VT}=\frac{(a-b)(b-c)(c-a)}{abc(a-b)(b-c)(c-a)}=\frac{1}{abc}\)

Ta có đpcm.

Phàn Tử Hắc
Xem chi tiết
Phùng Khánh Linh
7 tháng 11 2017 lúc 18:07

Bài 1 . Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 3x - 10) ta được x+ 2

Chia :( x3 + 5x2 - 4x - 20) cho ( x2 + 7x + 10) ta được x - 2

Do đó , ta có :

\(\dfrac{1}{x^2+3x-10}=\dfrac{x+2}{\left(x^2+3x-10\right)\left(x+2\right)}=\dfrac{x+2}{x^3+5x^2-4x-20}\)

Và : \(\dfrac{x}{x^2+7x+10}=\dfrac{x\left(x-2\right)}{\left(x^2+7x+10\right)\left(x-2\right)}=\dfrac{x^2-2x}{x^3+5x^2-4x-20}\)

Phùng Khánh Linh
7 tháng 11 2017 lúc 18:24

Bài 2 . a) Ta có :

\(\dfrac{x-1}{x^3+1}\)( giữ nguyên)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2+2x}{x^3+1}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{2x^2-2x+2}{x^3+1}\)

b) Ta có MTC = x2( y - z)2

Ta có :

\(\dfrac{x+y}{x\left(y-z\right)^2}=\dfrac{x^2+xy}{x^2\left(y-z\right)^2}\)

\(\dfrac{y}{x^2\left(y-z\right)^2}\)( giữ nguyên )

\(\dfrac{z}{x^2}=\dfrac{z\left(y-z\right)^2}{x^2\left(y-z\right)^2}\)

Trang Hoang
12 tháng 11 2017 lúc 8:08

bài này phần luyện tập à bạn

DoriKiều
Xem chi tiết
Kien Nguyen
6 tháng 11 2017 lúc 13:47

Sorry vì chữ mk hơi xấu...mong các bn dịch hộHỏi đáp Toán

DoriKiều
Xem chi tiết
Nguyễn Xuân Tiến 24
6 tháng 11 2017 lúc 10:08

Ta có: \(L=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ca+c+1}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ca+c+abc}\) ( Do abc = 1)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}=\dfrac{ab+a+1}{ab+a+1}=1\)