Lớp 5A xếp hàng hai được một số hàng không thừa bạn nào, xếp hàng ba hay hàng bốn đều được một hàng không thừa bạn nào. Nếu lấy tổng các hàng xếp được đó thì được 39 hàng. Hỏi lớp 5A có bao nhiêu bạn?
Hỏi đáp
Lớp 5A xếp hàng hai được một số hàng không thừa bạn nào, xếp hàng ba hay hàng bốn đều được một hàng không thừa bạn nào. Nếu lấy tổng các hàng xếp được đó thì được 39 hàng. Hỏi lớp 5A có bao nhiêu bạn?
Số học sinh lớp 5A phải là số chia hết cho 2,3,4 .Dễ thấy số nhỏ nhất chia hết cho 2,3,4 đó là 12 mà 6+3+4=13
39 so vs 3 thì gấp 3 lần
vậy số học sinh lớp 5A là:
12x3=36(H/S)
Tính đạo hàm
\(y ={ {x^2-2x+5} \over {x-1}}\)
\(\frac{\left(x^2-2x+5\right)'.\left(x-1\right)-\left(x^2-2x+5\right).\left(x-1\right)'}{\left(x-1\right)^2}=\frac{\left(2x-2\right).\left(x-1\right)-\left(x^2-2x+5\right).1}{\left(x-1\right)^2}=\frac{x^2-2x-3}{\left(x-1\right)^2}\)
Cho y=sin^2x. Chứng minh y'''+4y=0
Tính đạo hàm của hàm số :
\(y=\sqrt{x+\sqrt{x}}+\sqrt{x}\)
xét hàm số y=\(\sqrt{x+\sqrt{x}}+\sqrt{x}\) . ta có
y'=\(\frac{\left(x+\sqrt{x}\right)}{2\sqrt{x+\sqrt{x}}}+\frac{1}{2\sqrt{x}}=\frac{1+\frac{1}{2\sqrt{x}}}{2\sqrt{x+\sqrt{x}}}+\frac{1}{2\sqrt{x}}\)
=\(\frac{1+2\sqrt{x}}{4\sqrt{x}\sqrt{x+\sqrt{x}}}+\frac{1}{2\sqrt{x}}=\frac{1+2\sqrt{x}+2\sqrt{x+\sqrt{x}}}{4\sqrt{x}\sqrt{x+\sqrt{x}}}\)
y=\(\sin\left(lnx\right)+\cos\left(lnx\right)\)
xét hàm số : y=\(\sin\left(lnx\right)+\cos\left(lnx\right)\) ta có
y'=\(\frac{1}{x}\cos\left(lnx\right)-\frac{1}{x}\sin\left(lnx\right)=\frac{\cos\left(lnx\right)-\sin\left(lnx\right)}{x}\)
tính đạo hàm của hàm số
y= \(\ln\left(x+\sqrt{1+x^2}\right)\)
xét hàm số y=ln(\(x+\sqrt{1+x^2}\))
Ta có
y'=\(\frac{1}{x+\sqrt{1+x^2}}\left(1+\frac{x}{\sqrt{1+x^2}}\right)=\frac{1}{x+\sqrt{1+x^2}}.\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=\frac{1}{\sqrt{1+x^2}}\)
tính đạo hàm của hàm số
y=\(x.e^x.lnx\)
xét hàm số y=\(x.e^x.lnx\)
Ta có y' =\(e^xlnx+xe^xlnx+xe^x.\frac{1}{x}\)
=\(e^xlnx+xe^xlnx+e^x\left(1+lnx+x.lnx\right)\)
xét hàm số y=\(ln\left(e^x+\sqrt{1+e^{2x}}\right)\)
Y'=\(\frac{1}{e^x+\sqrt{1+e^{2x}}}\left(e^x+\frac{2e^{2x}}{2\sqrt{1+e^{2x}}}\right)=\frac{1}{e^x+\sqrt{1+e^{2x}}}.\frac{e^x\left(\sqrt{1+e^{2x}}+e^x\right)}{\sqrt{1+e^{2x}}}=\frac{e^x}{\sqrt{1+e^{2x}}}\)
tìm đạo hàm của hàm số sau
y=\(\sin\left(\cos^2x\right)\cos\left(\sin^2x\right)\)
xét hàm số y=\(\sin\left(cos^2x\right)cos\left(sin^2x\right)\) =
\(\frac{sin\left(cos^2x+sin^2x\right)+sin\left(cos^2x-sin^2x\right)}{2}=\frac{sin1+sin\left(cós2x\right)}{2}\)
tìm đạo hàm sau
y=\(\frac{x+\sqrt{x^2+1}}{\sqrt{1+x^2-x}}+\frac{\sqrt{1+x^2-x}}{x+\sqrt{x^2+1}}\)
xét hàm số sau \(\frac{x+\sqrt{x^2+1}}{\sqrt{1+x^2-x}}+\frac{\sqrt{1+x^2-x}}{x+\sqrt{x^2+1}}\)
=\(\frac{\left(x+\sqrt{x^2+1}\right)\left(\sqrt{1+x^2}+x\right)}{\left(1+x^2\right)-x^2}+\frac{\left(\sqrt{1+x^2-x}\right)\left(\sqrt{x^2+1}-x\right)}{x^2+1-x^2}=\left(x+\sqrt{x^2+1}\right)^2+\left(\sqrt{x^2+1-x}\right)^2=4x^2+2\)