Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
Easylove
Xem chi tiết
mai thu huyền
Xem chi tiết
mai thu huyền
17 tháng 8 2018 lúc 22:35
Lê Song Phương
Xem chi tiết
đặng văn nghĩa
10 tháng 10 2023 lúc 14:36

vãi

Nguyễn Trọng Hoàng Phúc
12 tháng 10 2023 lúc 19:57

Mày gửi cái gì vậy

Bùi Đức Huy
17 tháng 10 2023 lúc 18:27

A  Đu

Beautiful Angel
Xem chi tiết
Akai Haruma
12 tháng 2 2018 lúc 16:32

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^4+b^4)(a^2+b^2)\geq (a^3+b^3)^2\)

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)^2}{ab(a^3+b^3)(a^2+b^2)}=\frac{a^3+b^3}{ab(a^2+b^2)}(1)\)

Tiếp tục áp dụng BĐT Bunhiacopxky:

\((a^3+b^3)(a+b)\geq (a^2+b^2)^2\)

Mà theo hệ quả BĐT AM-GM: \(a^2+b^2\geq \frac{(a+b)^2}{2}\)

Suy ra \((a^3+b^3)(a+b)\geq (a^2+b^2)\frac{(a+b)^2}{2}\)

\(\Leftrightarrow a^3+b^3\geq \frac{(a+b)(a^2+b^2)}{2}(2)\)

Từ (1); (2) suy ra \(\frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a^3+b^3}{ab(a^2+b^2)}\geq \frac{a+b}{2ab}\)

Tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a+b}{2ab}+\frac{b+c}{2bc}+\frac{a+c}{2ac}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

michelle holder
Xem chi tiết
Lightning Farron
9 tháng 7 2017 lúc 9:56

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{4a^2+2ab+2ac+bc}=\dfrac{a^2}{2a\left(a+b+c\right)+\left(2a^2+bc\right)}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Suy ra BĐT cần chứng minh viết lại như sau:

\(\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\le\dfrac{\dfrac{1}{3}}{\dfrac{1}{9}}-2=1\)

\(\Leftrightarrow\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ca}+\dfrac{2c^2}{2c^2+ab}\le2\)

\(\Leftrightarrow\left(1-\dfrac{2a^2}{2a^2+bc}\right)+\left(1-\dfrac{2b^2}{2b^2+ca}\right)+\left(1-\dfrac{2c^2}{2c^2+ab}\right)\ge1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge1\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{bc}{bc+2a^2}=\dfrac{b^2c^2}{b^2c^2+2a^2bc}\ge\dfrac{b^2c^2}{b^2c^2+a^2\left(b^2+c^2\right)}=\dfrac{b^2c^2}{a^2b^2+b^2c^2+a^2c^2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{ca}{2b^2+ca}\ge\dfrac{c^2a^2}{a^2b^2+b^2c^2+c^2a^2};\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2}{a^2b^2+b^2c^2+c^2a^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2+b^2c^2+c^2a^2}=1\)

Vậy BĐT cuối đúng hay ta có ĐPCM

phạm việt hùng
Xem chi tiết
nguyễn viết hoàng
17 tháng 8 2018 lúc 21:18

do abc=1 nên đặt a=x/y;b=y/z;c=z/x

\(P=\sum\sqrt[4]{\dfrac{a+b}{c+1}}=\sum\sqrt[4]{\dfrac{\dfrac{x}{y}+\dfrac{y}{z}}{\dfrac{z}{x}+1}}=\sum\sqrt[4]{\dfrac{x\left(xz+y^2\right)}{yz\left(x+z\right)}}\)

ta có\(\dfrac{x\left(x+z\right)\left(xz+y^2\right)}{yz\left(x+z\right)^2}=\dfrac{x\left(x\left(z^2+y^2\right)+z\left(x^2+y^2\right)\right)}{yz\left(x+z\right)^2}\)

\(\ge\dfrac{x\sqrt{xz}\left(x+y\right)\left(z+y\right)}{yz\left(x+z\right)^2}\)(cô si 2 số)

P>=\(\sum\sqrt[4]{\dfrac{x\sqrt{xz}\left(x+y\right)\left(z+y\right)}{\left(x+z\right)^2yz}}\)>=3(cô si 3 số)

phạm việt hùng
17 tháng 8 2018 lúc 19:33

@Akai Haruma @Lighning Farron

Isolde Moria
Xem chi tiết
Unruly Kid
18 tháng 8 2017 lúc 15:54

Tự c/m BĐT phụ sau: \(x^5+y^5\ge x^2y^2\left(x+y\right)\)

Áp dụng vào bài :V

\(\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{a^2b^2\left(a+b\right)+ab}=\dfrac{ab}{ab\left[ab\left(a+b\right)+1\right]}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\)

Tương tự rồi cộng lại được đpcm

Isolde Moria
18 tháng 8 2017 lúc 14:46

Akai HarumaAce Legona hôm nay cực cho 2 bác r :">

Thánh cao su
Xem chi tiết