cho a,b,c >0 thoả mãn \(\sum a=1\)
CMR: \(\sum a^3+72abc\left(\sum ab\right)\le1\)
cho a,b,c>0 thoả mãn abc=1
cmr:
\(\sum\sqrt[4]{\dfrac{a+b}{c+1}}\) >=3
cho a,b,c >0 thỏa mãn a+b+c=3. Cmr:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3+abc\ge28\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
cho a,b,c >0 thõa mãn abc = 1
\(CMR:\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(a+b\right)}\ge\dfrac{3}{4}\)
với ∀a,b,c thuộc R, CMR:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge2+\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
cho a,b,c > 0 thỏa mãn a + b + c = 6abc.
Cmr: \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ac}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\ge2\)
cho a,b,c > 0 thỏa mãn a+b+c=6abc.
Cmr: \(\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\ge2\)
Cho 3 số thực dương \(a,b,c\) thỏa mãn \(abc=1\). Chứng minh rằng \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)