tìm x biết:
a)√(x+2)=\(\dfrac{5}{7}\)
b)\(\dfrac{5}{\text{√}\left(2x\right)+1+2}\in Z\)
1) Tìm x \(\in\) Q
a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)
b) \(\left|5-\dfrac{1}{2}x\right|=\left|\dfrac{-1}{5}\right|\)
2) Tìm x, y, z, biết
\(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)
Bài 2:
\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\\\left(y+\dfrac{1}{2}\right)^2\ge0\\\left(z-\dfrac{1}{3}\right)^2\ge0\end{matrix}\right.\Rightarrow\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2\ge0\)Mà \(\left(2x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{3}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{2}\\z=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{4},y=\dfrac{-1}{2},z=\dfrac{1}{3}\)
1)
a) \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)
\(\Leftrightarrow2x=\dfrac{7}{2}-\dfrac{5}{2}\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
b) \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)
\(\Leftrightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=-\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{48}{5}\\x=\dfrac{52}{5}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{48}{5};x_2=\dfrac{52}{5}\)
a/ \(2x+\dfrac{5}{2}=\dfrac{7}{2}\)
\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
b/ \(\left|5-\dfrac{1}{2}x\right|=\left|-\dfrac{1}{5}\right|\)
\(\Rightarrow\left|5-\dfrac{1}{2}x\right|=\dfrac{1}{5}\)
\(\Rightarrow\left[{}\begin{matrix}5-\dfrac{1}{2}x=\dfrac{1}{5}\\5-\dfrac{1}{2}x=\dfrac{1}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=\dfrac{13}{5}\end{matrix}\right.\)
Bài 2:
Vì \(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\\\left(x-\dfrac{1}{3}\right)^2\ge0\forall z\end{matrix}\right.\)
=> Để bt = 0 thì\(\left\{{}\begin{matrix}\left(2x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\\\left(z-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\\z-\dfrac{1}{3}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy.....................
\(\text{Cho }A=\left(\dfrac{3x^2+3}{x^3-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{2x^2-5x+5}{x-2}\)
\(\text{a, Rút gọn }\)
\(\text{b, Tìm }x\in Z\)\(\text{ để }A\in Z\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
\(\text{Tìm x, biết:}\)
\(a\)) \(20\text{%}x-x+\dfrac{1}{5}=\dfrac{3}{4}\)
\(b\)) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(c\)) \(\left(x-\dfrac{3}{4}\right)\left(4+3x\right)=0\)
\(d\)) \(x-\dfrac{1}{3}x+\dfrac{1}{5}x=\dfrac{-26}{5}\)
\(e\)) \(50\text{%}x+\dfrac{2}{3}x=x-5\)
\(g\)) \(\dfrac{2}{3}\left(x+\dfrac{9}{5}\right)-\dfrac{3}{10}.\left(5x-\dfrac{1}{3}\right)=\dfrac{7}{15}\)
câu c) mang tính mua vui hay gì hả bn
mếu thật thì x=0,x=số nào cx đc(câu trả lời này mang tính mua vui thôi nhé)
Tìm x biết:
\(a,\left(x-\dfrac{3}{4}\right)+50\%=\dfrac{1}{6}\)
\(b,\dfrac{1}{2}x-\dfrac{5}{6}x=\dfrac{7}{2}\)
\(c,\left(4-x\right)\left(3x+5\right)=0\)
\(d,\dfrac{x}{16}=\dfrac{50}{32}\)
\(e,\left(2x-3\right)+\dfrac{3}{2}=-\dfrac{1}{4}\)
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8
a,Tìm x,y,z biết/: \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và \(x^2-y^2=-16\)
b, Tìm x biết: \(\left|2x+3\right|=x+2\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
Tìm x:
\(a\)) \(\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(b\)) \(\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{27}{8}\right)^3=\dfrac{81}{16}\)
\(c\)) \(\dfrac{1}{2}.2^x+4.2^x=9.2^5\)
\(d\)) \(\text{12 - (2x +1)}^2=-69\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(a,\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}-\dfrac{2}{3}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\)
\(x=\dfrac{1}{2}+\dfrac{1}{3}\)
\(x=\dfrac{1}{5}\)
1. Tìm max và min
a) \(A=\sqrt{x-3}+\sqrt{7-x}\)
b) \(B=\dfrac{3+8x^2+12x^4}{\left(1+2x^2\right)^2}\)
2. Cho \(36x^2+16y^2=9\)
\(CM:\dfrac{15}{4}\text{≤}y-2x+5\text{≤}\dfrac{25}{4}\)
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
\(1,\\ a,A\le\sqrt{\left(x-3+7-x\right)\left(1+1\right)}=\sqrt{8}=2\sqrt{2}\\ A^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4\Leftrightarrow A\ge2\\ \Leftrightarrow2\le A\le2\sqrt{2}\\ \left\{{}\begin{matrix}A_{min}\Leftrightarrow\left(x-3\right)\left(7-x\right)=0\Leftrightarrow...\\A_{max}\Leftrightarrow x-3=7-x\Leftrightarrow x=5\end{matrix}\right.\)
\(B=\dfrac{\dfrac{5}{2}\left(4x^4+4x^2+1\right)+2\left(x^4-x^2+\dfrac{1}{4}\right)}{\left(2x^2+1\right)^2}\\ B=\dfrac{\dfrac{5}{2}\left(2x^2+1\right)^2+2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}=\dfrac{5}{2}+\dfrac{2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}\ge\dfrac{5}{2}\)
\(B=\dfrac{3\left(4x^4+4x^2+1\right)-4x^2}{\left(1+2x^2\right)^2}=\dfrac{3\left(1+2x^2\right)^2-4x^2}{\left(1+2x^2\right)^2}=3-\dfrac{4x^2}{\left(1+2x^2\right)^2}\)
Vì \(-\dfrac{4x^2}{\left(1+2x^2\right)^2}\le0\Leftrightarrow B\le3\)
\(\Leftrightarrow\left\{{}\begin{matrix}B_{min}\Leftrightarrow x^2=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{1}{\sqrt{2}}\\B_{max}\Leftrightarrow x=0\end{matrix}\right.\)
\(2,\)
Ta có \(\left(y-2x\right)^2=\left(-2x+y\right)^2=\left[\dfrac{1}{3}\left(-6x\right)+\dfrac{1}{4}\left(4y\right)\right]^2\)
\(\Leftrightarrow\left(y-2x\right)^2\le\left[\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2\right]\left[\left(-6x\right)^2+\left(4y\right)^2\right]=\dfrac{5^2}{3^2\cdot4^2}\left(36x^2+16y^2\right)=\dfrac{5^2}{4^2}\\ \Leftrightarrow\left|y-2x\right|\le\dfrac{5}{4}\\ \Leftrightarrow-\dfrac{5}{4}\le y-2x\le\dfrac{5}{4}\\ \Leftrightarrow\dfrac{15}{4}\le y-2x+5\le\dfrac{25}{4}\)
\(Max\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{9}{20}\end{matrix}\right.\\ Min\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{9}{20}\end{matrix}\right.\)
Tìm x, biết:
\(a,\dfrac{1}{3}:\left(2x-1\right)=\dfrac{-1}{6}\)
\(b,\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)
\(c,\dfrac{x}{8}=\dfrac{9}{4}\)
\(d,\dfrac{x-3}{2}=\dfrac{18}{x-3}\)
\(e,4,5x-6,2x=6,12\)
\(h,11,4-\left(x-3,4\right)=-16,2\)
a: =>2x-1=-2
=>2x=-1
hay x=-1/2
b: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\-\dfrac{2}{5}x-7=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};-\dfrac{35}{2}\right\}\)
c: x/8=9/4
nên x/8=18/8
hay x=18
d: \(\Leftrightarrow\left(x-3\right)^2=36\)
=>x-3=6 hoặc x-3=-6
=>x=9 hoặc x=-3
e: =>-1,7x=6,12
hay x=-3,6
h: =>x-3,4=27,6
hay x=31
a) \(\dfrac{1}{3}\div\left(2x-1\right)=\dfrac{-1}{6}\)
\(\left(2x-1\right).\dfrac{1}{3}\div\left(2x-1\right)=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)
\(\dfrac{1}{3}=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)
\(\dfrac{1}{3}=-1\left(2x-1\right)\div6\)
\(\dfrac{1}{3}=-2x+1\div6\)
\(x=-\dfrac{1}{2}\)
b) \(\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)
\(TH1:3x+2=0\)
\(3x=0-2\)
\(3x=-2\)
\(x=\dfrac{-2}{3}\)
\(TH2:\left(-\dfrac{2}{5}x-7\right)=0\)
\(\left(\dfrac{-2}{5}x-7\right)=0\)
\(\left(\dfrac{-2x}{5}+\dfrac{5\left(-7\right)}{5}\right)=0\)
\(\left(\dfrac{-2x-35}{5}\right)=0\)
\(-2x-35=0\)
\(-2x=0+35\)
\(x=-\dfrac{35}{2}\)
c) \(\dfrac{x}{8}=\dfrac{9}{4}\)
\(\Leftrightarrow x=\dfrac{9.8}{4}=\dfrac{72}{4}=18\)
\(x=18\)
d) \(\dfrac{x-3}{2}=\dfrac{18}{x-3}\)
\(x-3=18+2\)
\(x=20-3\)
\(x=17\)
e) \(4,5x-6,2x=6,12\)
\(\dfrac{9x}{2}-6,2.x=6,12\)
\(\dfrac{9x}{2}+\dfrac{-31x}{5}=6,12\)
\(\dfrac{5.9x}{10}+\dfrac{2\left(-31\right)x}{10}=6.12\)
\(\dfrac{45x-62x}{10}=6.12\)
\(=-17x\div10=6.12\)
\(-17x=10.6.12\)
\(x=-3,6\)
h) \(11,4-\left(x-3,4\right)=-16,2\)
\(x-3,4=-16,2+11,4\)
\(x-3,4=-4,8\)
\(x=-1,4\)