Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh
Xem chi tiết
Trên con đường thành côn...
3 tháng 9 2021 lúc 21:53

undefined

Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 21:53

a: Ta có: \(A=-x^2+4x+3\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-x^2+x\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Trên con đường thành côn...
3 tháng 9 2021 lúc 21:56

Câu d đề sai bạn nhé, biểu thức này chỉ có min, không có max

undefined

Dinh Thi Thuy Trang
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 11:49

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

....
Xem chi tiết
Yeutoanhoc
5 tháng 6 2021 lúc 10:07

`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`

Yeutoanhoc
5 tháng 6 2021 lúc 10:09

`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`

Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Huy Tú
15 tháng 7 2021 lúc 20:17

a, Ta có : \(A=4-\left|2x+5\right|\le4\)

Dấu ''='' xảy ra khi x = -5/2 

Vậy GTLN A là 4 khi x = -5/2 

b, Ta có : \(\left|x-1\right|+5\ge5\)

\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)

Dấu ''='' xảy ra khi x = 1 

Vậy GTLN B là 1/5 khi x = 1

c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)

Dấu ''='' xảy ra khi x = 2 ; y = -2 

Vậy GTLN C là 4 khi x = 2 ; y = -2

Trên con đường thành côn...
15 tháng 7 2021 lúc 20:17

undefined

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:40

a) Ta có: \(\left|2x+5\right|\ge0\forall x\)

\(\Leftrightarrow4-\left|2x+5\right|\le4\forall x\)

Dấu '=' xảy ra khi \(=-\dfrac{5}{2}\)

b) Ta có: \(\left|x-1\right|+5\ge5\forall x\)

\(\Leftrightarrow\dfrac{2019}{\left|x-1\right|+5}\le\dfrac{2019}{5}\forall x\)

Dấu '=' xảy ra khi x=1

c) Ta có: \(-\left|x-2\right|\le0\forall x\)

\(-\left|3y+6\right|\le0\forall y\)

Do đó: \(-\left|x-2\right|-\left|3y+6\right|+4\le4\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=-2

Nguyễn Thu Vân
Xem chi tiết
santa
30 tháng 12 2020 lúc 23:24

\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|=\left|-1\right|=1\)

Dấu "=" xảy ra <=> (x-2018)(x-2017) > 0

<=> \(\left[{}\begin{matrix}x>2018\\x< 2017\end{matrix}\right.\)

Vậy MaxA = 1 <=> \(\left[{}\begin{matrix}x>2018\\x< 2017\end{matrix}\right.\)

dan nguyen chi
1 tháng 1 2021 lúc 21:38

A = | x − 2018 | − | x − 2017 | ≤ | x − 2018 − x + 2017 | = | − 1 | = 1 Dấu "=" xảy ra <=> (x-2018)(x-2017) > 0 <=> [ x > 2018 x < 2017 Vậy MaxA = 1 <=> [ x > 2018 x < 2017

Minhmmmm96
Xem chi tiết
Trịnh Xuân Ngọc
25 tháng 3 2020 lúc 21:50

Bài 1: 

Ta có |x-8| > 0 với mọi x

=>A=37-|x-8| > 37 với mọi x

Vậy GTLN của A=37 với x-8=0 =>x=8

Bài 2 tương tự nhé

Học tốt :))

Khách vãng lai đã xóa
Quang
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 10 2021 lúc 19:02

a) \(2x-x^2-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

b) \(-9x^2+24x-18=-\left(9x^2-24x+16\right)-2\)

\(=-\left(3x-4\right)^2-2\le-2\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{4}{3}\)

Minh Hiếu
11 tháng 10 2021 lúc 19:04

a) \(2x-x^2-4\)

\(-x^2+2x-4\)

\(-\left(x^2-2x+1\right)-3\)

 \(-\left(x-1\right)^2-3\text{ }\text{≤}-3\)

Min =-3 ⇔\(-\left(x-1\right)^2=0\)

               ⇔\(x-1=0\)

               ⇔\(x=1\)

HOW TO LÀM
Xem chi tiết
Khôi Bùi
23 tháng 4 2022 lúc 18:25

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

Lê Hào 7A4
Xem chi tiết
αβγ δεζ ηθι
19 tháng 5 2022 lúc 14:44

a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6

(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2

2611
19 tháng 5 2022 lúc 14:46

`a)A=x^2+4x-2`

   `A=x^2+4x+4-6=(x+2)^2-6`

Vì `(x+2)^2 >= 0 AA x`

`<=>(x+2)^2-6 >= -6 AA x`

   Hay `A >= -6 AA x`

Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`

Vậy `GTN N` của `A` là `-6` khi `x=-2`

________________________________________________

`b)B=2x^2-4x+3`

   `B=2(x^2-2x+3/2)`

   `B=2(x^2-2x+1)+1=2(x-1)^2+1`

Vì `2(x-1)^2 >= 0 AA x`

`<=>2(x-1)^2+1 >= 1 AA x`

  Hay `B >= 1 AA x`

Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`

Vậy `GTN N` của `B` là `1` khi `x=1`

__________________________________________________

`c)C=x^2+y^2-4x+2y+5`

   `C=x^2-4x+4+y^2+2y+1`

   `C=(x-2)^2+(y+1)^2`

Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`

  `=>(x-2)^2+(y+1)^2 >= 0 AA x,y`

 Hay `C >= 0 AA x,y`

Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`

                         `<=>{(x=2),(y=-1):}`

Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1