ab2 \(\sqrt{\dfrac{3}{a^{2^{ }}b^4}}\)
(a≤0,b ∉0)
Giúp mình với
a) tính giá trị P = -\(\dfrac{5\sqrt{160}}{\sqrt{90}}\)
b) rút gọn biểu thức Q= \(\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}+2\sqrt{b}\) với a >0, b>0 và a# b
giải nhanh giúp mình với mình đang cần gấp
a: \(P=-5\sqrt{\dfrac{160}{90}}=-5\cdot\dfrac{4}{3}=-\dfrac{20}{3}\)
b: \(Q=\sqrt{a}-\sqrt{b}+2\sqrt{b}=\sqrt{a}+\sqrt{b}\)
Thực hiện phép tính:
a) A = \(\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}\) với x ≥ 2
b)\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) với a ≥ 0; b ≥ 0
☺ Các anh chị giúp em với, một câu thôi cũng được ạ!☺
b) \(B=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\left[\dfrac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{a}+\sqrt{b}}\right]:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}\right]:\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\left(a-\sqrt{ab}+\sqrt{b}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(B=\dfrac{a-\sqrt{ab}+b}{a-b}+\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(B=\dfrac{a-\sqrt{ab}+b}{a-b}+\dfrac{2\sqrt{ab}-2b}{a-b}\)
\(B=\dfrac{a-\sqrt{ab}+b+2\sqrt{ab}-2b}{a-b}\)
\(B=\dfrac{a+\sqrt{ab}-b}{a-b}\)
a) \(\sqrt{2}A=\sqrt{2x-2\sqrt{x-2}.\sqrt{x+2}}+\sqrt{2x+2\sqrt{x-2}.\sqrt{x+2}}\) (\(x\ge2\) )
\(=\sqrt{\left(x+2\right)-2\sqrt{x+2}.\sqrt{x-2}+\left(x-2\right)}+\sqrt{\left(x+2\right)+2\sqrt{x+2}.\sqrt{x-2}+\left(x-2\right)}\)
\(=\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}\)
\(=\left|\sqrt{x+2}-\sqrt{x-2}\right|+\sqrt{x+2}+\sqrt{x-2}\)
\(=\sqrt{x+2}-\sqrt{x-2}+\sqrt{x+2}+\sqrt{x-2}\) ( do \(x+2>x-2\ge0\Leftrightarrow\sqrt{x+2}>\sqrt{x-2}\) )
\(=2\sqrt{x+2}\)
\(\Leftrightarrow A=\sqrt{2}.\sqrt{x+2}\)
Vậy...
b) \(B=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right):\left(a-b\right)+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}.\dfrac{1}{a-b}+\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{a-\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{a-\sqrt{ab}+b+2\sqrt{ab}-2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-b}{a-b}\)
Vậy...
có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
Cm
\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\)với a>= 0, b >=0, a≠b
Ta có VT =\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
=\(\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) =\(\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
=\(\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
=\(\dfrac{a-b}{a-b}=1=VP\)
a : \(\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}\) với y ≥ 0 , y ≠ 0
b : \(\dfrac{5}{2}x^3y^3.\sqrt{\dfrac{16}{x^4y^8}}\)với x,y ≠ 0
c : \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)với a ≥ 0 , b ≠ 0
a) \(\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
b) \(\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{\left(x^2y^4\right)^2}}\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{20x^3y^3}{2x^2y^4}\)
\(=\dfrac{10x}{y}\)
c) \(ab^2\sqrt{\dfrac{3}{a^2b^4}}\)
\(=ab^2\dfrac{\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
\(a,\dfrac{y}{x}\cdot\sqrt{\dfrac{x^2}{y^4}}\left(y\ge0;x,y\ne0\right)\) (sửa đề)
\(=\dfrac{y}{x}\cdot\dfrac{\sqrt{x^2}}{\sqrt{y^4}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{\sqrt{\left(y^2\right)^2}}\)
\(=\dfrac{y}{x}\cdot\dfrac{x}{y^2}\)
\(=\dfrac{1}{y}\)
\(---\)
\(b,\dfrac{5}{2}x^3y^3\cdot\sqrt{\dfrac{16}{x^4y^8}}\left(x,y\ne0\right)\)
\(=\dfrac{5}{2}x^3y^3\cdot\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)
\(=\dfrac{5x^3y^3}{2}\cdot\dfrac{4}{x^2y^4}\)
\(=\dfrac{5x\cdot2}{y}\)
\(=\dfrac{10x}{y}\)
\(---\)
\(c,ab^2\sqrt{\dfrac{3}{a^2b^4}}\left(a>0;b\ne0\right)\) (sửa đề)
\(=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}\)
\(=\dfrac{ab^2\sqrt{3}}{\sqrt{\left(ab^2\right)^2}}\)
\(=\dfrac{ab^2\sqrt{3}}{ab^2}\)
\(=\sqrt{3}\)
#\(Toru\)
\(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\) với a > 0, b > 0.
a) Rút gọn P
b) Tính giá trị của P khi \(a=2\sqrt{3},b=\sqrt{3}\).
a: \(P=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
a)\(\sqrt{\dfrac{a^2}{25+10b+b^2}}\) với a < 0, b >0
b)\(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}\)với a khác b
c)\(\dfrac{x+4\sqrt{x}+4}{2+\sqrt{x}}\)với x >= 0
(a) \(\sqrt{\dfrac{a^2}{25+10b+b^2}}=\sqrt{\dfrac{a^2}{\left(5+b\right)^2}}=\dfrac{\sqrt{a^2}}{\sqrt{\left(5+b\right)^2}}\)
\(=\dfrac{\left|a\right|}{\left|5+b\right|}=\dfrac{-a}{b+5}\) (do \(a< 0,b>0\Rightarrow b+5>0\))
(b) \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}=\left(a-b\right)\sqrt{\dfrac{\left(ab\right)^2}{\left(a-b\right)^2}}=\left(a-b\right)\cdot\dfrac{\sqrt{\left(ab\right)^2}}{\sqrt{\left(a-b\right)^2}}\)
\(=\left(a-b\right)\cdot\dfrac{\left|ab\right|}{\left|a-b\right|}\).
(c) \(\dfrac{x+4\sqrt{x}+4}{2+\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}=\sqrt{x}+2.\)
Rút gọn biểu thức :
a) \(\dfrac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\) ( a > 0 , b > 0 )
b) \(\dfrac{1-8a\sqrt{a}}{1-2\sqrt{a}}\) ( a ≥ 0 , a ≠ \(\dfrac{1}{4}\) )
c) \(\dfrac{1-a}{1+\sqrt{a}}\) ( a ≥ 0 )
d) \(\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\) ( a ≥ 0 , a ≠ 9 )
a. \(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{a}\)
b. \(=\dfrac{1-\left(2\sqrt{a}\right)^3}{1-2\sqrt{a}}=\dfrac{\left(1-2\sqrt{a}\right)\left(1+2\sqrt{a}+4a\right)}{1-2\sqrt{a}}=1+2\sqrt{a}+4a\)
c. \(=\dfrac{1-\left(\sqrt{a}\right)^2}{1+\sqrt{a}}=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}{1+\sqrt{a}}=1-\sqrt{a}\)
d. \(=\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}=\sqrt{a}\)
\(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-\dfrac{a-b}{\sqrt{a}-\sqrt{b}}\) với \(a>0,b>0;a\ne b\)
giúp mk với!!!
`(asqrtb-bsqrta)/sqrt{ab}-(a-b)/(sqrta-sqrtb)`
`=(sqrt{ab}(\sqrta-sqrtb))/sqrt{ab}-((sqrta-sqrtb)(sqrta+sqrtb))/(sqrta-sqrtb)`
`=sqrta-sqrtb-(sqrta-sqrtb)`
`=-2sqrtb`
`(a\sqrtb-b\sqrta)/(\sqrt(ab)) -(a-b)/(\sqrta-\sqrtb)`
`=(\sqrt(ab) (\sqrta-\sqrtb))/(\sqrt(ab)) - ((\sqrta-\sqrtb)(\sqrta+\sqrtb))/(\sqrta-\sqrtb)`
`=(\sqrta-\sqrtb) - (\sqrta+\sqrtb)`
`=-2\sqrtb`