Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 14:32

\(Q=x^2\left(4-3x\right)=\dfrac{4}{9}.\dfrac{3}{2}x.\dfrac{3}{2}x\left(4-3x\right)\)

\(Q\le\dfrac{1}{27}.\dfrac{4}{9}.\left(\dfrac{3x}{2}+\dfrac{3x}{2}+4-3x\right)^3=\dfrac{256}{243}\)

\(Q_{maxx}=\dfrac{256}{243}\) khi \(\dfrac{3x}{2}=4-3x\Leftrightarrow x=\dfrac{8}{9}\)

Lê Bảo Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 14:57

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Shinichi Kudo
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 12 2021 lúc 15:05

\(A=\dfrac{x^2+x-2+x^2-x-2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x-3\right)}{2\left(x-2\right)\left(x+2\right)^2}=\dfrac{x-3}{x+2}\\ A\le0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x+2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x+2>0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 3;x\ne0\left(ĐKXD\right)\)

Quân Vũ
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 5 2019 lúc 19:50

\(B=\frac{3}{2}.2x\left(1-2x\right)\le\frac{3}{2}\frac{\left(2x+1-2x\right)^2}{4}=\frac{3}{8}\)

\(\Rightarrow B_{max}=\frac{3}{8}\) khi \(2x=1-2x\Rightarrow x=\frac{1}{4}\)

dia fic
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:02

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(S^2=(2x+3y)^2\leq (3x^2+2y^2)\left(\frac{4}{3}+\frac{9}{2}\right)\leq \frac{6}{35}(\frac{4}{3}+\frac{9}{2})=1\)

\(\Rightarrow S\leq 1\)

Vậy $S_{\max}=1$. Giá trị này đạt tại \(\left\{\begin{matrix} 3x^2+2y^2=\frac{6}{35}\\ \frac{3}{2}x=\frac{2}{3}y\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{4}{35}\\ y=\frac{9}{35}\end{matrix}\right.\)

Akai Haruma
2 tháng 1 2021 lúc 15:02

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(S^2=(2x+3y)^2\leq (3x^2+2y^2)\left(\frac{4}{3}+\frac{9}{2}\right)\leq \frac{6}{35}(\frac{4}{3}+\frac{9}{2})=1\)

\(\Rightarrow S\leq 1\)

Vậy $S_{\max}=1$. Giá trị này đạt tại \(\left\{\begin{matrix} 3x^2+2y^2=\frac{6}{35}\\ \frac{3}{2}x=\frac{2}{3}y\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{4}{35}\\ y=\frac{9}{35}\end{matrix}\right.\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 7:54

loading...  loading...  

Adorable Angel
Xem chi tiết
Hồng Phúc
15 tháng 3 2021 lúc 17:09

1.

\(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-7\le x^2+1\\-4x^2-4\le x^2-2x-7\end{matrix}\right.\) (Do \(x^2+1>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-4\le x\le-\dfrac{3}{5}\end{matrix}\right.\)

Hồng Phúc
15 tháng 3 2021 lúc 17:16

2.

\(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+7\le13x^2-26x-26\\x^2-2x-2\le x^2-5x+7\end{matrix}\right.\) (Do \(x^2-5x+7>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{11}{4}\\x\le-1\end{matrix}\right.\\x\le3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{4}\le x\le3\\x\le-1\end{matrix}\right.\)

Phạm Thùy Linh
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 12 2021 lúc 21:16

\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)

Đặt \(\dfrac{x}{y}=t\)

\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)

Với \(P=0\Leftrightarrow t=2\)

Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)

\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)

\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)

Trên con đường thành côn...
31 tháng 12 2021 lúc 21:20

Bài a hình như sai đề rồi bạn.

undefined

Nguyễn Hoàng Minh
31 tháng 12 2021 lúc 21:59

\(a,\text{Đặt }\left\{{}\begin{matrix}S=y+z\\P=yz\end{matrix}\right.\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\left(y+z\right)^2-2yz+x^2=8\\x\left(y+z\right)+yz=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S^2-2P+x^2=8\\Sx+P=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}S^2-2\left(4-Sx\right)+x^2=8\\P=4-Sx\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}S^2+2Sx+x^2-16=0\left(1\right)\\P=4-Sx\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(S+x-4\right)\left(S+x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}S=-x+4\Rightarrow P=\left(x-2\right)^2\\S=-x-4\Rightarrow P=\left(x+2\right)^2\end{matrix}\right.\)

Mà y,z là nghiệm của hệ nên \(S^2-4P\ge0\Leftrightarrow\left[{}\begin{matrix}\left(4-x\right)^2\ge4\left(x-2\right)^2\\\left(-4-x\right)^2\ge4\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow-\dfrac{8}{3}\le x\le\dfrac{8}{3}\)