Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(S^2=(2x+3y)^2\leq (3x^2+2y^2)\left(\frac{4}{3}+\frac{9}{2}\right)\leq \frac{6}{35}(\frac{4}{3}+\frac{9}{2})=1\)
\(\Rightarrow S\leq 1\)
Vậy $S_{\max}=1$. Giá trị này đạt tại \(\left\{\begin{matrix} 3x^2+2y^2=\frac{6}{35}\\ \frac{3}{2}x=\frac{2}{3}y\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{4}{35}\\ y=\frac{9}{35}\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(S^2=(2x+3y)^2\leq (3x^2+2y^2)\left(\frac{4}{3}+\frac{9}{2}\right)\leq \frac{6}{35}(\frac{4}{3}+\frac{9}{2})=1\)
\(\Rightarrow S\leq 1\)
Vậy $S_{\max}=1$. Giá trị này đạt tại \(\left\{\begin{matrix} 3x^2+2y^2=\frac{6}{35}\\ \frac{3}{2}x=\frac{2}{3}y\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{4}{35}\\ y=\frac{9}{35}\end{matrix}\right.\)