Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cao Thị Thùy Linh

Cho x,y,z là các số dương thỏa mãn \(\dfrac{1}{x+y}\)+\(\dfrac{1}{y+x}\)+ \(\dfrac{1}{z+x}\)=6.

CMr: \(\dfrac{1}{3x+3y+2z}\)+ \(\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\le\dfrac{3}{2}\).

Giúp mình nk ^^

Akai Haruma
17 tháng 9 2017 lúc 20:56

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)

\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)

\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)

Cộng theo vế:

\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)


Các câu hỏi tương tự
Hoai Bao Tran
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Nue nguyen
Xem chi tiết
Thành
Xem chi tiết
camcon
Xem chi tiết
Linh Mai
Xem chi tiết
em ơi
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết